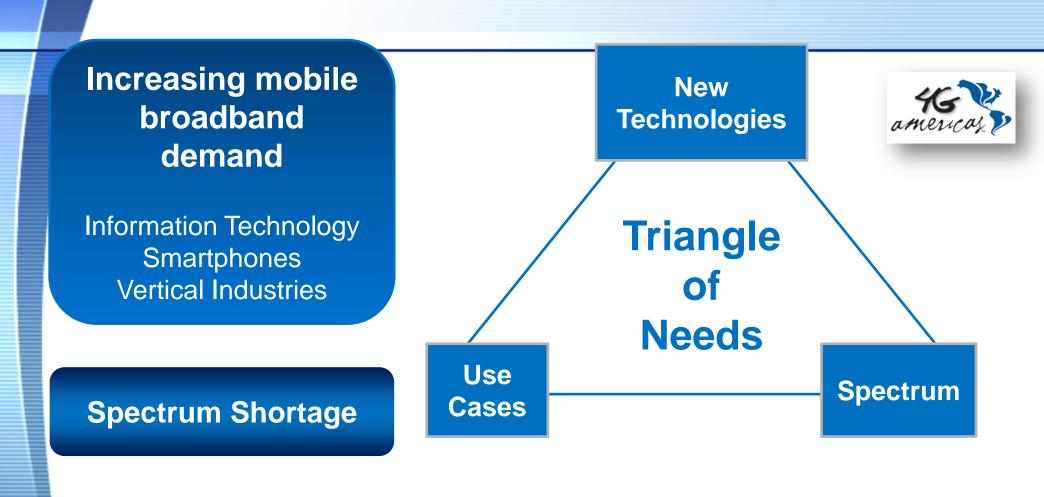


4G Americas

The Voice of 5G for the Americas


Perspective from Industrial Associations

5G Spectrum Requirements

Dr. Håkan Andersson, Ericsson presenting on behalf of Chris Pearson, President, 4G Americas

5G Workshop between Regional Initiatives20 October 2015, Lisbon

Why is 5G spectrum important in 2015?

- Identification of spectrum relies on regulators' cooperation and guidance in the WRCs in the years 2015 (WRC-15) and 2019 (WRC-19)
- WRC-15 should decide which 5G spectrum will be studied and considered for identification at WRC-19

5G Considerations – An Overview

5G is coming!

- 5G applications and usage scenarios are envisioned
- ITU-R administrations have agreed on a timeline for IMT-2020
- Industry is preparing for specifications, prototypes and trials

Spectrum needs of 5G must also be addressed as the vehicle to deliver various 5G applications and use cases

- Technological advancements enabling access to cm/mm-bands bands in support of applications requiring large contiguous channels
- Access to more low frequency spectrum in support of 5G applications requiring wide coverage areas

Identification of sufficient and adequate spectrum relies on regulators' cooperation

Regional/Global Harmonization

- As 5G will move to inclusion of a larger set of bands, global harmonization becomes essential in the success of 5G as it reduces:
 - Device/deployment complexity
 - Cost to consumers through economies of scale
- International/regional regulatory groups (ITU-R, CITEL, etc.)
 could play a significant role now by agreeing on:
 - An agenda item for WRC-19 on 5G spectrum
 - Studies of a range of frequencies from which a set of globally harmonized bands could be identified for 5G
 - Consideration of bands that could accommodate various 5G use cases/applications
- The FCC (USA) role:
 - Remain engaged with industry (e.g. workshops)
 - Work on service rules and licensing options for potential 5G bands (NPRM)
 - Active support in WRC-15/19 discussions

Access to Variety of Spectrum

Lower Frequency Bands (< 6 GHz)

- Lower bands provide better coverage through and around obstacles and flexible transition from 4G to 5G.
- Continued growth of data and video demands more spectrum.
- Additional spectrum 389-1009 MHz needed by 2020, according to ITU-R

Higher Frequency Bands (>6 GHz)

- New technologies enable use of higher bands
- Below 30 GHz important for propagation/RF and above 30 GHz easier access to wider channels
- Several hundred MHz per operator (multi-operator)

www.4gamericas.org

Having access to a variety of spectrum bands in support of all applications is key to success of 5G

U.S. Current and Future Spectrum Allocations

Frequency Band	Amount of Spectrum	Comments
700 MHz	70 MHz	Ultra-High Frequency (UHF)
850 MHz	64 MHz	Cellular and Specialized Mobile Radio
1.7/2.1 GHz	90 MHz	Advanced Wireless Services (AWS)-1
1695-1710 MHz 1755 to 1780 MHz 2155 to 2180 MHz	65 MHz	AWS-3. Uses spectrum sharing
1.9 GHz	140 MHz	Personal Communications Service (PCS)
2000 to 2020 2180 to 2200 MHz	40 MHz	AWS-4 (Previously Mobile Satellite Service)
2.3 GHz	20 MHz	Wireless Communications Service (WCS)
2.5 GHz	194 MHz	Broadband Radio Service / Closer to 160 MHz deployable
	FUTURE	
600 MHz	Up to 120 MHz	Incentive auctions
3.55 to 3.70 GHz	150 MHz	Small-cell band with spectrum sharing
5 GHz	195 MHz	Unlicensed band
Above 6 GHz	Multi GHz	See FCC Chairman's blog of August 3, 2015

Possibilities for 5G Spectrum

Allocating
new spectrum
is key for
commercial
5G rollout

mmWave Local area (e.g. 70—90 GHz)

cmWave Solid area (<30 GHz)

Below 6GHz wide area (<6.5Ghz)

U.S. Spectrum Recommendations

The United States proposed the following ranges to be studied for consideration at WRC-19 (overlaps with Regional CITEL proposal):

27.5-29.5 GHz

37-40.5 GHz

47.2-50.2 GHz

5

50.4-52.6 GHz

59.3-71 GHz

Outcome of the CITEL Meeting – 17-23 August 2015

CITEL PCC.II met the week of 17 August and finalized the Americas regional positions on WRC-15 agenda items including on 5G spectrum

CITEL agreed on a regional proposal to WRC-15, supported by 10 countries, to consider studying the following bands for 5G (WRC-19):

10-10.45 GHz*	27.5-29.5 GHz	47.2-50.2 GHz
23.15-23.6 GHz	31.8-33 GHz	50.4-52.6 GHz
24.25-27.5 GHz	37-40.5 GHz	59.3-76 GHz

^{*}Only for countries included in footnote 5.480 in ITU-R Radio Regulations

Inclusion of several bands below 30 GHz by the Americas region strengthens worldwide support, especially for the 28 GHz as one likely common band between the Americas and certain Region 3 administrations such as Korea, Japan, and China

Licensing Aspects of 5G Spectrum

Licensed

- Regulator
 granting exclusive
 right to an
 operator
- Provides reliable, secured spectrum for predictable quality/capacity
- Critical part of 5G deployments

Shared

- Shared with incumbents
- Coordinated access when/where not used by incumbents.
- Facilitates timely access to spectrum in shared bands

www.4gamericas.org

Unlicensed

- No registration or individual permission
- Rules
 established to
 avoid
 interference
- Complement for 5G, e.g. in small cell deployment

All licensing schemes have a role to play in 5G!

Solutions to Enable Access to New Spectrum

Protection of Incumbents

- Studies using realistic models and parameters
- Consideration of mitigation techniques such as sensing, database, beacons, etc.
- Examples of prior experience (e.g. US AWS-3, 3.5 GHz band, etc.)

Propagation-related Challenges

- Various impairments and ways to cope with them are described
- Need for proper channel models stressed

Semiconductor and Antenna technology

- Beamforming and spatial multiplexing techniques
- RFIC and hardware implementation advancements

End-to-End 5G Ecosystem

Spectrum Resiliency

Mesh

Networks

Flexible Networks

Cloud RAN

M2M/IoT

REGULATORY

Lawful Intercept Spectrum Sharing

Emergency Services

RADIO

Advanced Interference Management

Massive MIMO

Security

Modulation

Millimeter Wave

CORE

NFV

Security

M2M/IoT

Ubiquitous Storage &

Computing

APPLICATIONS

M2M/IoT

World Wide Wireless

Web

Cloud

Security

Context Aware Networking

M2M/IoT

D2D Apps

DEVICES

Mesh Networks D2D

Context Aware Networking

Modulation

Conclusions

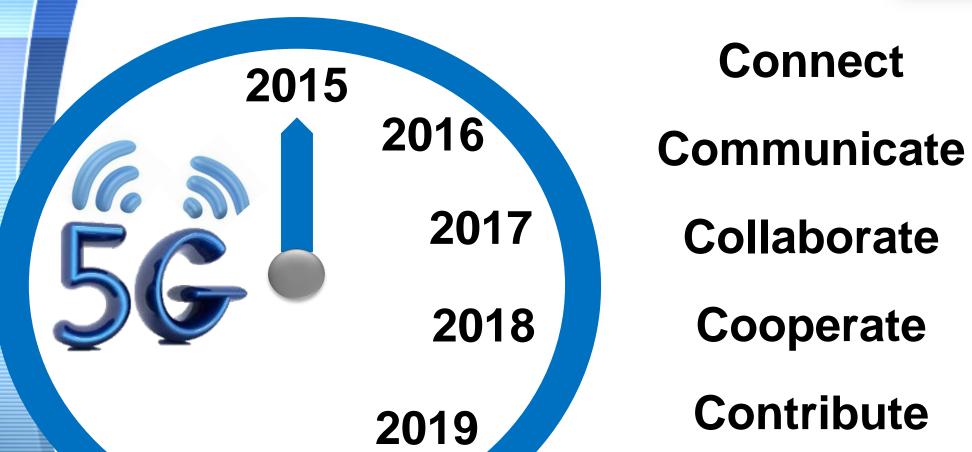
A variety of bands is needed to address both coverage and capacity needs of evolved 4G and 5G systems.

Frequencies beyond those traditionally used for cellular systems, especially those above 6 GHz are important to consider.

While the lower frequencies have better propagation characteristics for better coverage and thus can support both macro and small cell deployments, higher frequencies can support wider bandwidth carriers (due to large spectrum availability at mm-wave bands) for providing very high peak data rates in specific areas where traffic demands are very high.

Conclusions

As 4G systems evolve and 5G systems develop over time, mobile spectrum bands below 6 GHz will be valuable to allow the smooth migration from 4G LTE usage to 5G.


Despite challenges, the mobile industry is capable of extending mobile services into spectrum bands in the range above 6 GHz.

Action is needed by regulators to ensure that new spectrum needs are addressed for the evolution of 4G and, to address societal needs and for the timely introduction of 5G, to identify new spectrum ranges to be studied in ITU-R.

Toward......2020

5G and the 5C's



2020

4G Americas publicizes 5G work and is willing to embrace the 5C's with organizations around the world.

THANK YOU

Available for free download at www.4gamericas.org

