

## VIRTUALIZED HYBRID SATELLITE-TERRESTRIAL SYSTEMS FOR RESILIENT AND FLEXIBLE FUTURE NETWORKS

INFORMATION & COMMUNICATION TECHNOLOGIES (ICT) Grant Agreement #644843 – VITAL – H2020-ICT-2014-1



# Virtualized SatCom Networks and Multi-Domain Integration with 5G: Architectural Perspectives from VITAL Project

5GPPP - 1<sup>st</sup> 5G Architecture Workshop Brussels 6/4/2016

Tinku Rasheed PhD
Future Networks R&D Head, CREATE-NET
H2020 VITAL Project Coordinator





#### VITAL At a Glance

H2020 RIA (Research and Innovation Action) Project – ICT 2014-1

Duration: Feb 1, 2015 – July 31, 2017 (30 months)

• Budget: 2,9 MEuros

Resource: 341 PM effort

Project Coordinator: Tinku Rasheed, Create-Net

• Website: <a href="https://ict-vital.eu">https://ict-vital.eu</a>

Twitter: VITAL Project @H2020 VITAL

























# **Project Vision**



Telecom services combining terrestrial and satellite elements

Provision of virtual networks (Virtual Network Slice—as-a-Service)

Federated SDN/NFV architectural framework (Resource virtualization and federated satellite + terrestrial resource management)



#### Infrastructure substrate



Satellite hubs/gateways, satellite traffic optimisers, security, transmission and switching ,etc.

Satellite network infrastructure

Radio/fixed access points/
multiplexers, mobile packet core,
security, transmission and
switching,etc.

Terrestrial network infrastructure

HORIZ N 2020



# Main Concepts & Objectives

End-to-End Customer **Federated Network Resource Management** front-end Management and control planes Segment-wide scope **SDN Controller (s) NFV Manager SDN Controller (s) NFV Manager** Radio/fixed access points/ Satellite hubs/gateways, multiplexers, mobile packet core Infrastructure plane satellite traffic optimisers, security, transmission and security, transmission and switching, etc. switching ,etc. (Mix of physical network functions **NFV Infrastructure NFV Infrastructure** /appliances & virtualized network Terrestrial network infrastructure Satellite network infrastructure functions) Mobile/fixed user **Dual-access user terminals/Terrestrial** equipment with satellite backhaul terminal(s)

HORIZ N 2020



# Main Concepts & Objectives

Design and proof-of-concept development of virtualized SatCom ground segment, or **Sat-Cloud-RAN**.

Design and validation of the **NFV Manager**, a management and orchestration entity specialized for SatCom service providers

Design and validation of the **multi-domain network service orchestrator**, for federated resource management over hybrid NFV/SDN-based Satellite-Terrestrial Networks

Validation and demonstration of the concepts and features through a combination of **real test-beds** and **software emulators** 

To contribute to relevant standardization (ETSI NFV, ETSI SCN) and open-source initiatives (ETSI OSM, ON.LAB)







#### **Application Scenarios**

Scenario 1 - Virtualization and sharing of satellite communication platforms

**Improvement area:** SDN/NFV-enhanced satellite ground segment communication platforms



Improvement area: Combination of SDN/NFVenhanced satellite ground segment communication platforms for satellite backhauling in terrestrial networks

## Scenario 3 - Satellite Terrestrial Hybrid Access Services

Improvement area: Combination of SDN/NFVenhanced satellite ground segment communication platforms and terrestrial networks for hybrid access services





# **Scenario 1:** Virtualization and sharing of satellite communication platforms



| Scenario             | Use Case                                      | Main Focus                                    |
|----------------------|-----------------------------------------------|-----------------------------------------------|
| Scenario 1 -         | UC1.1: SDN-based flexible satellite           | Flexibility and customisation of the provided |
| Virtualization and   | bandwidth on demand                           | satellite network services                    |
| sharing of satellite | UC1.2: Satellite Virtual Network Operator     | Support of slicing and multi-tenancy in the   |
| communications       |                                               | satellite ground segment                      |
| platforms            | <b>UC1.3</b> : Satellite Network as a Service | Cloudification of the satellite ground        |
|                      | (SatNaaS)                                     | segment                                       |





# **Scenario 2:** 4G/5G Satellite Backhauling Services



| Scenario              | Use Case                                    | Main Focus                                      |
|-----------------------|---------------------------------------------|-------------------------------------------------|
| Scenario 2 4G/5G      | UC2.1: Enhanced control and management of   | Improved integration and management of          |
| satellite backhauling | satellite backhauling capacity              | satellite backhauling services                  |
| services              | UC2.2: Extending satellite backhauling with | Extension and coupling of the backhauling       |
|                       | edge computing services and multi-operator  | service with virtualization capabilities at the |
|                       | sharing                                     | satellite terminal that allow for the delivery  |
|                       |                                             | of mobile edge computing services.              |



# **Scenario 3:** Satellite Terrestrial Hybrid Access Services



| Scenario               | Use Case                                              | Main Focus                                  |
|------------------------|-------------------------------------------------------|---------------------------------------------|
| Scenario 3 –Satellite- | UC3.1: SDN-based flexible federation of               | SDN-based flexible traffic steering between |
| terrestrial hybrid     | Satellite and terrestrial networks                    | satellite and terrestrial access network    |
| access services        | UC3.2: Media distribution over Federated              | Federation of SDN and NFV-enabled satellite |
|                        | SDN/NFV-enabled terrestrial and satellite             | and terrestrial domains for content         |
|                        | network                                               | distribution                                |
|                        | <b>UC3.3</b> : Customer functions virtualisation over | VNF-as-a-Service (VNFaaS)                   |
|                        | Federated Terrestrial and Satellite network           |                                             |



### System Architecture – High level view







#### System Architecture – More detailed view





#### Multi-Domain Integration model





#### Multi-Domain Integration model

3rd party playing the role of





#### **Conclusions**

- Unified/Federated network service orchestration and management capabilities will allow the service providers and operators to augment 5G service capabilities, offer hybrid end-to-end services and identify new business models
- Adoption of SDN/NFV technologies into the satellite domain is a key facilitator to make SatCom industry well integrated within the anticipated multi-layer/heterogeneous 5G network architecture
- VITAL project research and develops solutions that will enable 'seamless' 'hybrid' end-to-end services and applications over SatCom & 5G technologies
  - Mobile Edge Computing services
  - Seamless Emergency services
  - Seamless mobile network management
  - High Speed Trains
  - Broadband 5G European Aviation Networks
  - Integrated Energy Sector Communications





#### **Contact:**

Tinku Rasheed PhD CREATE-NET Research tinku.rasheed@create-net.org

www.ict-vital.eu



#### Acknowledgements

This document has been produced in the context of the H2020 VITAL project. The VITAL project consortium would like to acknowledge that the research leading to these results has received funding from the European Union's H2020 Research and Innovation Programme (H2020-ICT-2014-1) under the Grant Agreement H2020-ICT-644843.





### **Backup Slides**





#### Overall Satellite network architecture





### Tradeoff analysis of satellite gateway functional split





#### SDN/NFV based Sat-Cloud-RAN architecture

- Satellite-domain SDN-based network control and management
- Different architectural options identified (single SDN controller, dedicated controller per tenant, hierarchical controller)
- Three control applications delineated:
  - SDN-based bandwidth on demand
  - SDN-based QoS on demand
  - SDN-based satellite gateway diversity



