

## **SDN-NFV: 5G Equipment for experimentation**

#### Software Resources:

- → SDN Networking OS (PicOS).
- → OpenEPC Release 6, Full Suite.





#### Hardware:

- In house computing resources
- OpenSDN switches
- NetFPGAs (router desisgn)
- Hybrid SDN: Brocade commercial SDN switch
- IP Multimedia: Iskratel IMS operator core
- Commercial LTE Femtocell Stack(R&D License)

7x Dell 12cores/32GB



PICA8 p-3297 48x1GbE

4 x netFPGA 10G



Xilinx Virtex-5 FPGA. 4 SFP+ interface 10Gbps. X8 PCI Express Gen 2. 20 GTX Serial Transceivers.



PICA8 p-3922 48x10GbE SFP+



Brocade ICX 6610 48x1/10 GbE RJ45





Universida<sub>de</sub>Vigo

Felipe Gil: xil@gti.uvigo.es



## TSA: SDN controlled terminal prototype



[1] "TSA: Terminal-Supported 5G Network Optimization", C. Giraldo-Rodríguez et al., IEEE CWN 2015

[2] "TSA, an SDN Architecture including End Terminals", *C. Giraldo-Rodríguez et al., IEEE CCNC 2016* 

#### **TSA** main concepts:

- Overlay Network at end-terminals using network namespaces (*netns*) and virtual switches.
- Applications are unaware of underlying access networks and technologies.
- Controller configure terminal's internal SDN switches to handle application traffic through the available access networks/technologies (OpenFlow rules).
- Terminal Access networks can be dynamically selected (by controller or by the terminal) without applications being aware (session continuity).

#### **Prototype implementation**

- Bluetooth/WiFi/LTE capable terminals.
- WebRTC Application running on terminals netns.

#### Use case example

Transparent reconfiguration of WiFi access network.

- Controller can steer traffic to BT/LTE during WIFI reconfiguration to avoid connectivity holes.
- WebRTC application unaware of underlay actions (session continuity).



Felipe Gil: xil@gti.uvigo.es



### Full operator virtualization

#### **OpenEPC services as Network Virtualized Functions**

#### **OpenEPC over OpenStack/Docker**

- OpenStack Glance Images to deploy
  OpenEPC services over OpenStack.
- Dockerization of individual OpenEPC services to deploy as docker containers.

#### **Automation (Puppet/Chef/Salt)**

- One-click deployment of OpenEPC individual services in virtualized environments.
- Improved scalability with on-demand dynamic deployment of VMs/containers according to client load.
- High Availability (HA) in OpenEPC services with failover VMs/containers.

# Cognitive Networking and Traffic Engineering



#### **Capabilities**

- Pattern detection
- Traffic monitoring
- Traffic prediction
- Learning strategies
- Quality of Experience
- Discrete event simulation
- Protocol engineering

#### **Experience**

- Operator Network optimization and traffic characterization
- Root Cause Analysis

#### **Assets**

- Proprietary discrete event simulator
- Quality of Experience models
- Traffic analysis plugins for Nagios



Felipe Gil: xil@gti.uvigo.es

