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Algorithm 1 – Greedy Hybrid Precoding (GHP) .
Initialization: Perform the singular value decomposition of
the channel H = U⌃V⇤ and build the optimum uncon-
strained precoder Fopt using the first Ns columns of V.
Main steps:
1) Initialize F

(0)
RF with the element-wise normalization

F
(0)
RF = Fopt ↵ |Fopt| .

2) For k = 0 . . . Lt �Ns � 1:

a) Update F
(k)
BB =

⇣
F

(k)
RF

⌘†
Fopt.

b) Compute the residual R(k)
= Fopt � F

(k)
RF F

(k)
BB .

c) Compute the first singular vector u1 of the singular
value decomposition R(k)

= U⌃V⇤.
d) Append the element-wise normalization of u1 as the

new column F
(k+1)
RF =

h
F

(k)
RF u1 ↵ |u1|

i
.

3) Final update FBB = F†
RFFopt.

4) Normalization FBB =

p
Ns

FBB
kFRFFBBkF

GHP to perform faster than SOMP in any circumstances.
Furthermore, solving least squares problems with FRF that
increases in size, as in step (a), can be done efficiently by
avoiding a full Cholesky factorization of F⇤

RFFRF at each step
and just performing an update of the factorization computed
in the previous iteration.

Table I summarizes for each method the computational
complexity of each step. The first singular value decomposition
of the channel and the final normalization step are not included
since they are common to all the strategies. Notice that the
decoupled strategy provides the hybrid precoder and combiner
with only one run of the algorithm, while GHP and SOMP
have to be applied twice, one for each.

TABLE I: Computational complexity

Decoupled

Operation Complexity
FRF = VLt ↵ |VLt | O(NtLt)
WRF = WRF ↵ |WRF| O(NtLt)
Kw = (W⇤

RFWRF) O(NtL
2
t )

K�1/2
w H̃ = W⇤

RFHFRF O(N2
t Lt)

SVD(Ĥ) O(L3
t )

Overall O(N2
t Lt)

GHP

Operation Complexity
FRF = VLt ↵ |VLt | O(NtLt)
(Lt � Ns) ⇥ FBB = F†

RFFopt O((Lt � Ns)NtL
2
t )

(Lt � Ns) ⇥ R = Fopt � FRFFBB O((Lt � Ns)NtLtNs)
(Lt � Ns) ⇥ Rank 1 decomp. of R O((Lt � Ns)NtN

2
s )

(Lt � Ns) ⇥ u1 ↵ |u1| O((Lt � Ns)Nt)
FBB = F†

RFFopt O(NtL
2
t )

Overall O(NtL
2
t Ns)

SOMP

Operation Complexity
(Lt) ⇥ Correlation A⇤R O(N2

t LtNs)
(Lt) ⇥ Atom selection O(N2

t Lt)
(Lt) ⇥ FBB = F†

RFFopt O(NtL
3
t )

(Lt) ⇥ R = Fopt � FRFFBB O(NtL
2
t Ns)

(Lt) ⇥ R = R/|RkF O(NtLt)
Overall O(N2

t LtNs)
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Fig. 2: Achievable spectral efficiency. ULA system Nt = Nr =
32 antennas and Lt = Lr = 4 RF chains. Ns 2 {1, 2, 4} data
streams are considered.

VII. SIMULATION

We consider the narrow-band clustered channel model in
[13] with Ncl = 4 clusters and Nray = 8 propagation paths per
cluster. We assume all clusters are of equal power satisfying
the normalization constraint E[kHk2F ] = NtNr . The angles
of departure and arrival are normal randomly distributed with
mean cluster angle uniformly randomly distributed in [0, 2⇡].
The angle spread is set to 7.5. The same total power constraint
is fixed for all precoders with equal power allocation per
stream and SNR =

⇢
�2
n

.

Fig. 2 shows the spectral efficiency achieved by the pro-
posed hybrid precoders GHP and analog+digital, together with
the sparse hybrid precoder [13] and the optimum unconstrained
solution given by the SVD of the channel for different SNR
values. Both transmitter and receiver are assumed to have
ULAs with Nt = Nr = 32 antennas and Lt = Lr = 4 RF
chains with which they transmit Ns 2 {1, 2, 4} data streams.
All the hybrid precoders achieve spectral efficiencies close to
those achieved by the optimum unconstrained solution, within
a small gap increasing for higher Ns. The GHP overcomes the
analog+digital and the sparse hybrid precoder for any number
of data streams. The analog+digital nearly overlaps with GHP
when the number of streams equals the number of RF chains
and performs slightly worse for Ns = 1 or 2.

Fig. 3 shows the spectral efficiency achieved by the hybrid
precoders in terms of the number of RF chains. The same
ULA system with Nt = Nr = 32 is considered with equal
number of RF chains in transmission and reception (Lt = Lr)
varying from 1 to 10. The number of streams equals the
number of RF chains Ns = Lt. The SNR is fixed to 0
dB. We see that the GHP and the analog+digital precoders
nearly overlap, both with a non-negligible improvement with
respect to the sparse hybrid precoder. The gap between the
spectral efficiency achieved by the hybrid precoders and the
unconstrained optimal solution increases with the number of
RF chains. To explore the performance when the number
of RF chains is greater than the number of data streams,
Fig.-4 plots the spectral efficiency for the same set up with
the difference that now the number of data streams is fixed
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