2nd Global 5G Event on 9-10 November, Rome (Italy)

Considerations for 5G Spectrum Harmonization

9 November, 2016

Kyung-Mee KIM (kyungmee5@korea.kr) National Radio Research Agency, MSIP Republic of Korea

Why global harmonization?

- Spectrum harmonization is important for:
 - easiness of global roaming for mobile communication
 - Iow cost device by global economy of scale
 - avoidance of interference issue with neighboring countries
 - value creation of spectrum for licensee
- In reality, difficulty for IMT spectrum below 6 GHz:
 - a few available bands due to heavy use of incumbent services and different usages in country by country
 - not enough to get contiguous wide bandwidth
 - not easy to coexist with existing services/applications taking into account IMT coverage

IMT identifications within ITU

4(00 600	800	1000	1700	1900	2100	2300	2 500	2700	3400	3600	5000MHz
WARC-92					1885 202 140M 5.388	25 2110 901 5.38	2200 M 88					
WRC- 2000		806 1 5.	960 54M 317A	1710 1 5.	1885 75M 384A			2500 19 5.3	2690 90M 884A			
4 WRC-07	50 470 69 20M 5.286AA	98 806 108M 5.317A 790 8 72M 5.32	862 1 17A				2300 2 100M 5.384A	400		3400 20 5.4 5.4	3600 0M 30A 32A, 5.433A	
WRC-12	694 9 5.	790 6M 312A										
WRC-15	470 69 228M 5.295 5.296A	8	1427 91 5.341	1518 M A,B,C					3 3 5.42	300 3400 100 M 9A,B,C,D,E,F	3600 3700 1.00 M 5.434	4800 4990 190 M 5.441A,I3

Why 5G in higher frequency band?

- Opportunities in bands above 6 GHz, esp. above 24 GHz
 - contiguous wide bandwidth for performance
 - tolerable path loss within small cells
 - easy coexistence due to small coverage and advancing technologies
 - maximized efficient data delivery by multi-beamforming
- WRC-19 AI 1.13 for IMT in 24.25-86 GHz (Res. 238)

24.25-27.5 GHz*, 31.8-33.4 GHz**, 37-40.5 GHz, 40.5-42.5 GHz**, 42.5-43.5 GHz, 45.5-47 GHz, 47-47.2 GHz**, 47.2-50.2 GHz, 50.4-52.6 GHz, 66-76 GHz and 81-86 GHz

* to take into account EESS (s-E) and SRS (s-E) in the band 25.5-27 GHz **may require additional mobile allocation on a primary basis

Korean views towards 5G

- 28 GHz band will be a practical solution for 5G initiation
 - introduce 5G trial at PyeongChang Winter Olympic Games in Feb. 2018 within the band 26.5-29.5 GHz (focusing on the band 27.5-28.5 GHz)
 - more than 30 stations using 28 GHz band are testing in Seoul, PyeongChang and other cities
 - * The band **3.4-3.7 GHz** is positively considered for 5G as well as LTE.
- Strategy for 5G Eco environments in higher band
 - prepare early 5G market in 28 GHz band and facilitate 5G commercialization
 - at WRC-19, achieve global/regional harmonization in 24.25-86 GHz taking into account technical solution

Technical solution for harmonization

- Harmonization by implementation aspects (Doc. WRC-15/102A24R1)
 - multi-band plan on a single device
 - similar to 3GPP band plan implementation
 - To give flexibility for administration to select band plan

Thank you!

Questions? Answers!

