Merging new Cloud and Air-Interface Capabilities to meet Requirements of Emerging Use Cases from Vertical Industries in 5G

Dr.-Ing. Thomas Haustein

Technologies & Standards
Wireless Communications and Networks
Fraunhofer Heinrich Hertz Institute
Berlin, Germany

Fraunhofer

joint work with my colleagues:

S.Selvanesan, R.R.Thomas, T.Fehrenbach, T.Wirth, C.Hellge, K.Koslowski, W.Keusgen and K.Mahler

CLEEN 2018, 6th Workshop on Cloud Technologies and Energy Efficiency in Mobile Communication Networks, Porto, Portugal

Contents

- Emerging New Use Cases from Vertical Industries
 - Mission Critical Communications
- MEC for 5G 5G-MiEdge Project
 - Supporting Ultra High Data rates and Low Latency at the same time
- V2X Use Case
 - Overview SOTA
 - IEEE 802.11p
 - Introduction of 3GPP's Cellular Approach
 - Modes of Operation, Resource Pooling

Tactile Internet

Paradigm Shift from Transmititing Information to Networked Control

Source: www.domeoproducts.com

Source: http://blogs.voanews.com/

Mission Critical Communication

New KPIs: Interaction Speed and Functional Safety & Security

Robotics and Telepresence

source: https://netzoekonom.de

source: www.dlr.de

source: www.bogen-electronic.com

Networked Virtual Reality

Source: www.telegraph.co.uk

Collaborative Driving

Driver assistance with AR of potentially dangerous objects and situations

Augmented Reality

Collaborative event perception and virtual attendance of external users

Source: ITU TechWatch Report: The Tactile Internet

Road Traffic: Predictive Actions, Platooning...

Source: courtecy of the US Department of Transportation

Serious Gaming

Source: www.rh.gatech.edu

URLLC – Ultra Reliable Low Latency Communication

Latency Budget Considerations for the Tactile Internet

5G-MiEdge Project Millimeter-wave Edge Cloud as an Enabler for 5G Ecosystem

European Commission

Key Capabilities of 5G (IMT2020) relevant for the Project

- 5G applications selected from ITU-R:
 - ✓ Enhanced MBB
 - ✓ Ultra-Reliable LLC
- Key capabilities
 - ✓ >10 Gbps peak user rate
 - ✓ >1000x system rate
 - √ <5 ms latency
 </p>
- Background technological enablers
 - ✓ Millimeter-wave (mmWave) + HetNet for eMBB
 - ✓ Numerology + MEC for uRLLC
 - ✓ Multi-connectivity both for eMBB & uRLLC

3 Key application areas of 5G

8 Key Capabilities (KPIs) of 5G

@ Recommendation of ITU-R M.2083-0, Sep. 2015

Trends of mmWave in 3GPP & IEEE

Trends in 3GPP

- ✓ Rel. 15 will finalize NR (phase 1) by June 2018
- ✓ New NR bands to be included.
 - 24.25 29.5 GHz
 - 31.8 33.4 GHz
 - 37 40 GHz

Trends in IEEE

- √ 802.11ad standardized in 2012
- ✓ FCC expanded 60GHz unlicensed band up to 71GHz for 5G
- ✓ Wi-Fi certified WiGig (11ad) from Oct. 2016
- ✓ First commercial 11ad router in Japan from June 2017

5G antennas @ WTP'17

11ad supported Wi-Fi router

Requirements from 5G Applications (User Side View)

VR/AR using multiple cameras

- ✓ Expected big market in 5G
- ✓ High data rate bet. cameras and media room.
 - Uncompressed: 4x12 Gbps, compressed: 4x50 Mbps
- ✓ High data rate bet. media room and mobile headset
- ✓ End-to-end low latency < 5 ms
 </p>

Automated driving using extended sensors

- ✓ Expected big market beyond 5G
- Extended sensors for cooperative perception
- ✓ High data rate between vehicles & RSUs
- ✓ End-to-end low latency < 10 ms

High date rate & low latency are required at the same time

Augmented Reality using multiple cameras

Immersive virtual reality using multiple cameras

Automated driving using extended sensors

Problems of 5G Deployment (Operator Side View)

CAPEX/OPEX

- Cost of deploying a high number of mmWave smallcell BSs in dense areas
- Cost of operating a high number of mmWave smallcell BSs (energy consumption)
- ✓ Cabling cost of Ethernet cables with capacity >10
 Gbps

End-to-end latency

- ✓ Non-ideal backhaul between 5G RAN and application provider
- Slow data rate & long latency due to non-ideal backhaul

Dense urban scenario

Dense stadium scenario

5G MiEdge Project

5G-MiEdge: Millimeter-wave Edge Cloud as an Enabler for 5G Ecosystem

Objectives

- To combine mmWave access and Mobile Edge Cloud (MEC) to realize ultra high speed & low latency communications even with limited backhaul
- To develop a new cellular network control plane (liquid RAN C-plane) in order to enable a proactive resource allocation for the mmWave edge clouds
- To develop mechanism (new ecosystem) to realize user/application centric orchestration of deployed mmWave edge clouds (RAN virtualization)
- To contribute to the standardization of mmWave access and liquid RAN C-plane in both 3GPP and IEEE
- To demonstrate a joint test-bed of 5G-MiEdge project in the cities of Berlin and 2020 Tokyo Olympic game areas

Technology Contributions in 5G-MiEdge

Data rate

mmWave Massive MIMO Multi-connectivity

HetNet C/U splitting

E2E latency

MEC Numerology CAPEX/OPEX

Self backhauling RAN virtualization

mmWave Edge Cloud

Prefetch/cache/run data/application of users and transfer them instantaneously bet. MiEdge AP & UEs

Liquid RAN C-plane

Collect context (location, action, etc.) information and provide traffic forecast to users and application providers

User/application centric orchestration

Network orchestration of MiEdge AP (SDN) by user or application

5G-MiEdge Use Cases

Omotenashi Service

- Download in-flight entertainment or VR city info
- >6 Gbps at waiting area

Moving hotspot

- Download entertainment and upload massive SNS
- >80Gbps in train and >2.6Gbps in bus

2020 Tokyo Olympic

- Immersive AR/VR, public video surveillance for security
- >500Gbps in stands and <5ms latency

Outdoor dynamic crowd

- Download VR city info and upload massive SNS
- 6Gbps in 1600m² -> 15Tbps in 4km²

Automated driving

- Exchange sensor information for safety driving
- >1Gbps data rate and <10ms latency per link

Example: Street Perception with Extended Sensors

State of the Art in V2V Communication

Human in the Loop – using Audio-Visual Communication

Conclusions from In-Situ Observation

Useful Features and observed limits of SOTA solution

Embedded Mechanisms and Features

- Multi-Sensor based V2V communication system design
- Required shared spectrum, MAC protocol design and MCS levels
- Packet prioritization mechanism
- Packet Recovery

Limits

- prone to loss of individual connections
- human in the loop
- limited fairness (big vs small, fast vs slow)
- damage and losses are far to high to be accepted by society in long term

Radio Channels for V2X System Design

recommendations to fora & standards

Virtual Field Trials on measured channels Interoperability Testing e.g. of 802.11p

V2C supporting meshed D2D (1)

- New Network Topologies
 - Mix of Adhoc, Meshed, D2D,
 - Infrastructure assisted direct communication
 - Moving Meshed Networks

- Diverse information flow (w/ & w/o infrastructure support)
 - Broadcast,
 - Multicast,
 - BI-Unicast

V2C supporting meshed D2D (2)

Need for beyond SotA technologies:

PHY (waveforms):

- Multi Access Interference for user plane
- Near-far power dynamics
- Self detection of interference range
- Multi-antenna support for multiplexing and interference mitigation
- Robust RACCH

MAC (Cognitive Spectrum Mgmt):

- Dynamic cluster reconfiguration
- Multi-cluster spectrum coordination (w/ & w/o coordinator)
- In-cluster RRM (robust and spectrum efficient)
- Adhoc Network autonomy if no infrastructure available
- Scalable c-plane / u-plane splitting

Optimized C2X Networking

- Predictive analytics and knowledge management for mobility support of vehicles in cellular networks
 - Building a knowledge base for context-aware seamless mobility support
 - Reconstruction of radio maps and cell load prediction
- Anticipatory networking based on predictive analytics and knowledge management
 - Anticipatory buffering to assure smooth media streaming (illustrated in the figure)
 - Anticipatory handover to avoid handover failures
 - Anticipatory traffic offloading to reduce cellular traffic load

5GAA

Paving the way to use 5G for the Automotive Industry

State of the Art in V2V Communication

Environment Perception supported by IEEE 802.11p Wireless Technology

Recent Updates of 3GPP's Cellular Approach

Introduction

- Cellular V2V specified in 3GPP LTE Rel. 14, advancements in LTE Rel. 15
- Based on the D2D communications specified in LTE Rel. 12 and 13
- V2X consists of 3 broad aspects
 - Vehicle to Vehicle (V2V)
 - Vehicle to Pedestrian (V2P)
 - Vehicle to Network/Infrastructure (V2I)
- Detailed working of V2X can be seen in
 - A New 5G Technology for Short-Range
 Vehicle-to-Everything Communications, R. Molina-Masegosa and J. Gozalvez

Modes of Operation

- Data transmitted directly between vehicles via Sidelink (SL) communications
- Mode 3 Scheduled Resource Allocation
 - Centralized resource allocation by the eNB
 - Works only when UE is in coverage and in RRC_CONNECTED Mode
 - Receives control information from the eNB for resource allocation
- Mode 4 Autonomous Resource Allocation (covers 802.11p scenarios, but with dedicated radio resources)
 - Distributed resource allocation by the UE
 - Works when both in and out of coverage (either RRC_CONNECTED or IDLE mode)
 - Carries out sensing of previous resources to determine resources for allocation

Modes of Operation

- PHY Sidelink Channels
 - PSDCH Physical Sidelink Discovery Channel
 - PSCCH Physical Sidelink Control Channel
 - PSSCH Physical Sidelink Shared Channel
- Transmission Types
 - Semi Persistent Scheduled (SPS) Transmissions
 - Transmitter schedules data transmission in regular intervals over a duration
 - One Shot (OS) Transmissions
 - Single transmission event

Resource Pools

Concept of Resource Pools

Mode 3
Allocation

Mode 4
Allocation

Time →

Allocation of Resources

Concept of Resource Pools

Mode 3 Allocation

Mode 4
Allocation

	UE1 Control		
	UE1		
	Data		
		UE2 Control	
		UE2	
		Data	

Time →

Allocation of Resources

Concept of Resource Pools

Mode 3 Allocation Mode 4 Allocation

	UE3 Control			
	UE3			
	Data			
		UE4 Control		
		UE4		
		Data		
			UE3 Data UE4 Control	UE3 Data UE4 Control UE4 UE4

Time →

Problem Statement

Collisions in Shared Transmit Resource Pool

- Independent resource pools for mode 3 and mode 4 is not very spectrally efficient
- Using a shared transmit resource pool for both mode 3 and mode 4 poses a few problems
 - Mode 4 UEs scan the previous subframes and can detect as to whether UEs are using a given resource
 - eNB is not aware of the resources used by mode 4 UEs
 - Mode 3 UEs do not use sensing, instead relies entirely on the information given by the eNB
 - eNB allocates resources to mode 3 UEs which are already in use by mode 4 UEs
 - Causes collisions between mode 3 and mode 4 UEs
- Details can be seen in TDoc R1-1720112 by Fraunhofer

Problem Statement

Collisions in Shared Transmit Resource Pool

	UE1 Control	UE3 Control		
	UE1	UE3		
	Data	Data		
			UE2/4 Control	
			UE2/4	
			Data	
,				

Time →

Solution

Reporting by Mode 3 UEs

- Mode 3 UEs also carry out scanning and sensing of previous resources in transmit resource pool
- Sends this occupancy report to the eNB
 - eNB avoids resources with higher probability of collisions with mode
 4 UE allocations
 - Allocates these resources for mode 3 UEs

UE1 Control	UE3 Control		
UE1	UE3		
Data	Data		
		UE4 Control	
		UE4	
		Data	
			UE2 Control
			UE2
			Data

Time →

Mode 3 Sensing

Conclusions

Summary and Possible Future Works

- eMBB+uRLLC require joint optimization of Air-Interface & MEC capabilities
- many new use cases promise value to society and are enablers for vertical industries
 - robotics
 - live events
 - manufacturing (Industry 4.0)
 - Vehicular Communication using extended sensors
- V2X SOTA Technology Approaches
 - IEEE
 - 3GPP

References

- [1] R. Molina-Masegosa and J. Gozalvez, "LTE-V for Sidelink 5G V2X Vehicular Communications: A New 5G Technology for Short-Range Vehicle-to-Everything Communications," *IEEE Veh. Technol. Mag.*, vol. 12, no. 4, pp. 30–39, Dec 2017.
- [2] Third Generation Partnership Project, "Enhancement of 3GPP support for V2X scenarios (Release 15)," 3GPP, Tech. Rep. 3GPP TS 22.186 v15.2.0, Sep. 2017.
- [3] Third Generation Partnership Project, "Enhancement of 3GPP support for V2X scenarios; Stage 1 (Release 15)," 3GPP, Tech. Rep. 3GPP TS 22.186 v15.2.0, Sep. 2017.
- [4] Qualcomm, "Making 5G NR a reality: Leading the technology innovations for a unified, more capable 5G interface," SlideShare, Sep. 2016, Last Accessed Apr. 2018, https://www.slideshare.net/qualcommwirelessevolution/making-5gnr-a-reality.
- [5] Q. Wei, W. Sun, B. Bai, L. Wang, E. G. Strm, and M. Song, "Resource allocation for V2X communications: A local search based 3D matching approach," in *IEEE Intl. Conf. on Commun. (ICC)*, May 2017, pp. 1–6.
- [6] A. Asadi, Q. Wang, and V. Mancuso, "A survey on device-to-device communication in cellular networks," IEEE Commun. Surv. Tut., vol. 16, no. 4, pp. 1801–1819, April 2014.
- [7] P. Phunchongharn, E. Hossain, and D. I. Kim, "Resource allocation for device-to-device communications underlaying LTE-advanced networks," *IEEE Wireless Commun.*, vol. 20, no. 4, pp. 91–100, August 2013.
- [8] Third Generation Partnership Project, "Architecture enhancements for V2X services (Release 15)," 3GPP, Tech. Rep. 3GPP TS 23.285 v14.5.0, Dec. 2017.
- [9] Third Generation Partnership Project, "Multimedia Broadcast Multicast Service (MBMS) within E-UTRAN (Release 14)," 3GPP, Tech. Rep. 3GPP TS 36.440 v14.0.0, Mar. 2017.
- [10] Third Generation Partnership Project, "Multiplexing and channel coding (Release 15)," 3GPP, Tech. Rep. 3GPP TS 36.212 v15.0.1, Jan. 2018.
- [11] Third Generation Partnership Project, "Physical layer procedures (Release 15)," 3GPP, Tech. Rep. 3GPP TS 36.213 v15.0.1, Jan. 2018.
- [12] Fraunhofer HHI, Fraunhofer IIS, "Resource Pool Sharing between V2X Mode 3 and Mode 4 UEs," Tech. Rep. R1-1720112, Dec. 2017.
- [13] Fraunhofer HHI, Fraunhofer IIS, "Resource Pool Sharing between V2X Mode 3 and Mode 4 UEs," Tech. Rep. R1-1807220, May 2018.
- [14] Fraunhofer HHI, Fraunhofer IIS, "Resource Pool Sharing between Mode 3 and Mode 4 UEs," Tech. Rep. R2-1807211, May 2018.

