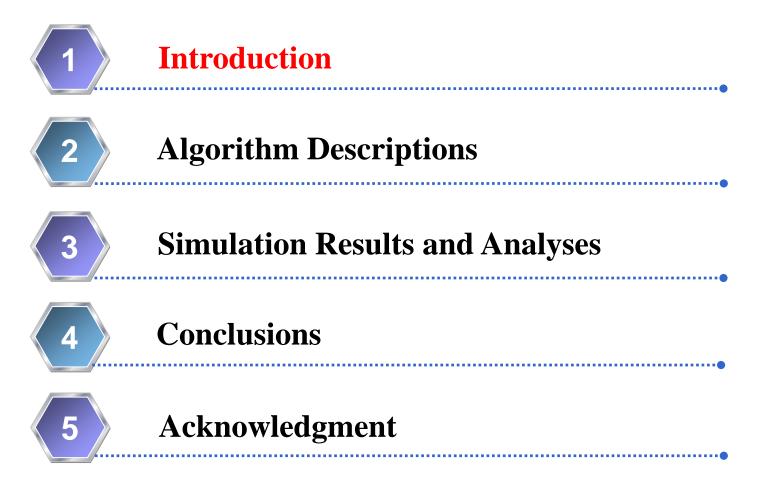
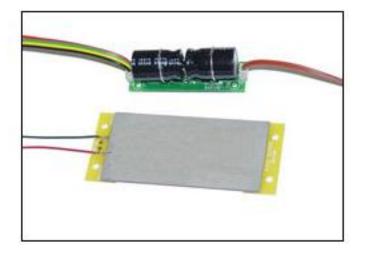
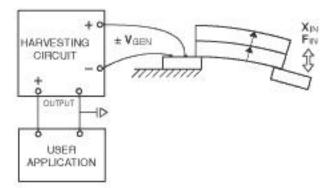


Joint Transceiver Design in Full-Duplex MISO Wireless Powered Communication Networks with User Cooperation

Rongting Cai, Lihua Li, Zhi Wang ,Su Xin Beijing University of Posts and Telecommunications cairongting@bupt.edu.cn



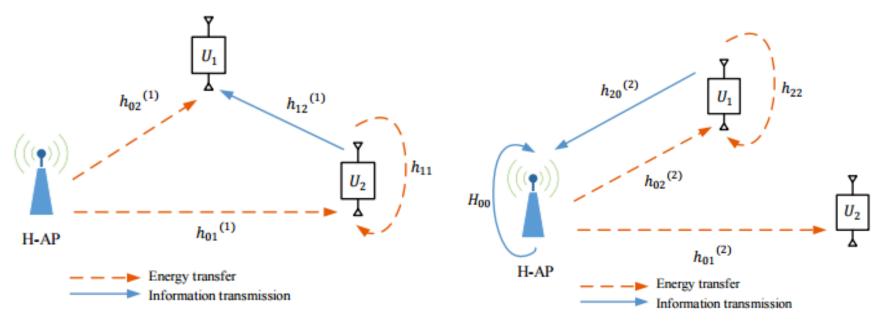




Radio-frequency (RF) energy harvesting (EH)

Simultaneous wireless information and power transfer (SWIPT)

wireless powered communication network (WPCN)



Algorithm Descriptions

A. SYSTEM MODEL

Since the throughput increases monotonically with SNR, the maximization problem is formulated as

P1:
$$\max_{\tilde{\mathbf{w}}_{0}^{t}, \mathbf{w}_{0}^{re}} \tilde{S}(\tilde{\mathbf{w}}_{0}^{t}, \mathbf{w}_{0}^{re})$$

s.t. C_{1} : $\mathbf{w}_{0}^{re} \mathbf{H}_{00} \mathbf{w}_{0}^{t} = 0$
 C_{2} : $\|\mathbf{w}_{0}^{re}\| = \|\mathbf{w}_{0}^{t}\| = 1$

◆1、 add the ZF constraint to cancel the RSI

$$\mathbf{y}_{0}^{(2)} = \mathbf{w}_{0}^{re} \mathbf{h}_{20}^{(2)} \left(\mathbf{h}_{12}^{(1)} \sqrt{\beta P_{1} P_{2}} \mathbf{x}_{1} + \sqrt{\beta P_{2}} \mathbf{n}_{2} \right) + \mathbf{w}_{0}^{re} \mathbf{H}_{00} \mathbf{w}_{0}^{t(2)} \mathbf{x}_{0} + \mathbf{w}_{0}^{re} \mathbf{n}_{0}$$

$$\mathbf{w}_{0}^{re} \mathbf{H}_{00} \mathbf{w}_{0}^{t} = 0$$

$$\mathbf{y}_{0}^{(2)} = \mathbf{w}_{0}^{re} \mathbf{h}_{20}^{(2)} \left(\mathbf{h}_{12}^{(1)} \sqrt{\beta P_{1} P_{2}} \mathbf{x}_{1} + \sqrt{\beta P_{2}} \mathbf{n}_{2} \right) + \mathbf{w}_{0}^{re} \mathbf{n}_{0}$$

◆2、 decompose the energy beamforming vector and the information beamforming vector

$$\mathbf{w}_{0}^{t} = \mathbf{N}_{0}^{t} \mathbf{v}_{0}^{t}$$
$$\mathbf{w}_{0}^{re} = \mathbf{v}_{0}^{re} \mathbf{N}_{0}^{re}$$
$$\mathbf{v}_{0}^{re}$$
Accordingly, (P1) can be reformulated as
P2 :
$$\max_{\tilde{\mathbf{w}}_{0}^{t}, \mathbf{v}_{d}^{re}} \tilde{S}(\tilde{\mathbf{w}}_{0}^{t}, \mathbf{v}_{d}^{re})$$
$$s.t. \|\mathbf{v}_{0}^{re}\| = \|\tilde{\mathbf{w}}_{0}^{t}\| = 1$$

 \bullet 3, introduce an auxiliary parameter x

$$\tilde{\mathbf{w}}_{0}^{t} = x \frac{\prod_{\tilde{\mathbf{h}}_{01}^{H}} \tilde{\mathbf{h}}_{01}^{H}}{\prod_{\tilde{\mathbf{h}}_{01}^{H}} \tilde{\mathbf{h}}_{02}^{H}} + \sqrt{1 - x^{2}} \frac{\prod_{\tilde{\mathbf{h}}_{01}^{H}} \tilde{\mathbf{h}}_{02}^{H}}{\prod_{\tilde{\mathbf{h}}_{01}^{H}} \tilde{\mathbf{h}}_{02}^{H}}$$

(P2) can be equivalently transformed into :

 $\max_{0 < x \le 1} f\left(x\right)$

where f(x) is defined as

$$\begin{aligned} \mathrm{P3} &: f\left(x\right) = \max_{\mathbf{v}_{0}^{\mathrm{re}}} \tilde{S}\left(\tilde{w}_{0}^{t}\left(x\right), v_{0}^{re}\right) \\ &s.t. \left\|\mathbf{v}_{0}^{re}\right\| = 1 \end{aligned}$$

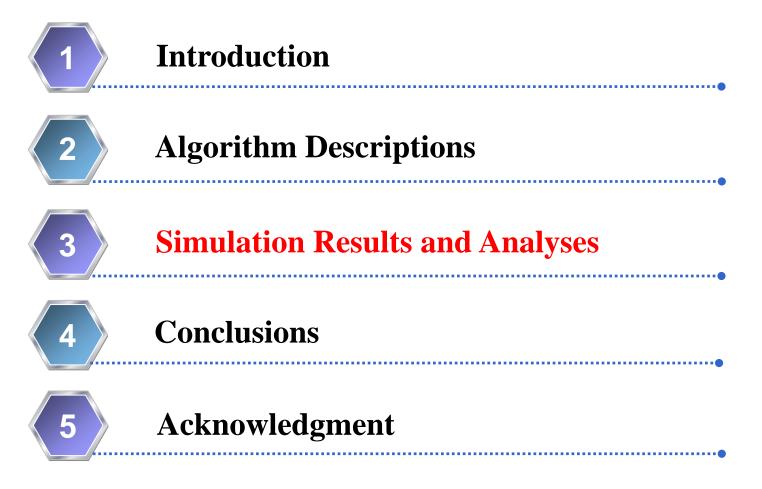
4, a series of efficient variable substitution operations and exploiting iterative algorithm

P5 : max
$$f(x)$$

s.t.C1 : $0 < x \le 1$
C2 : $\|\tilde{\mathbf{w}}_0^t(x)\| = 1$

$$f(x) = \frac{h(x)}{g(x)} = \frac{Ax^2 (bx + c\sqrt{1 - x^2})}{B (bx + c\sqrt{1 - x^2}) + Cx^2 + d}$$
(27)
where $A = a^2 \eta P_0 |\mathbf{h}_{12}^{(1)}|^2 |\mathbf{h}_{20}^{(2)}|^2$, $B = \delta_2^2 (1 - |\mathbf{h}_{11}|^2) |\mathbf{h}_{20}^{(2)}|^2$, $C = a^2 \delta_0^2 |\mathbf{h}_{12}^{(1)}|^2$

To summarize, the algorithm to solve (P5) is given in Algorithm 1 to find the global optimum.


Initialize l = 0, u = 1 and define $t = (\sqrt{5} - 1)/2$. Repeat

Set $x_1 = l + (1 - t) (u - l)$ and $x_2 = l + t (u - l)$; Given (25), compute $f(x_1)$ and $f(x_2)$ respectively; If $f(x_1) \ge f(x_2)$, then $u = x_2$; else $l = x_1$. **Until** $u - l \leq \varepsilon$, where ε is the convergency accuracy. **Return** the the optimal beamforming vector \mathbf{w}_0^t and \mathbf{w}_0^{re} .

δ

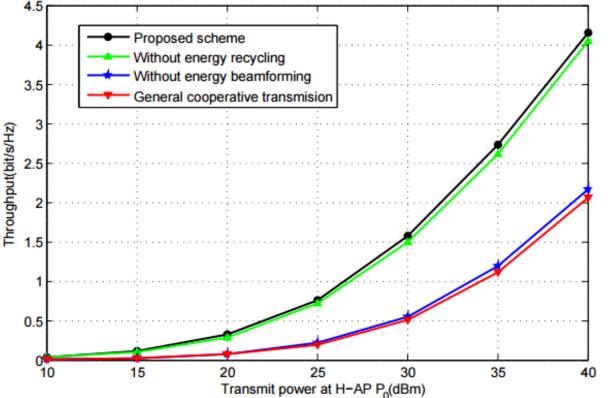


Fig. 2. Maximum throughput versus transmit power at H-AP P_0 with $N = 5, \alpha = 4$

Compared with the following cases: 1)The beamforming of energy and information is jointly optimized. However, the users is unable harvest the power from its own transmitted signal.

2)Maximal -ratio-combining (MRC) method is considered at the receiver of H-AP, which brings beneficial gain for SNR. No energy beamforming is carried out at the H-AP, which indicates that the transmitting power is allocated uniformly among all antennas.

3) the general AF cooperative transmission. The users only can harvest energy from the H-AP and no beamforming design is implemented.

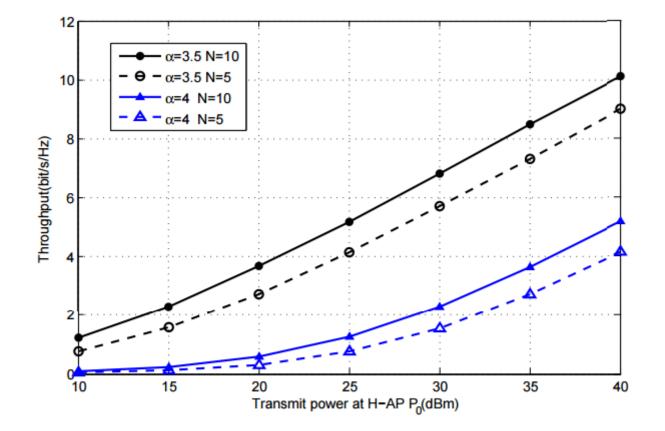
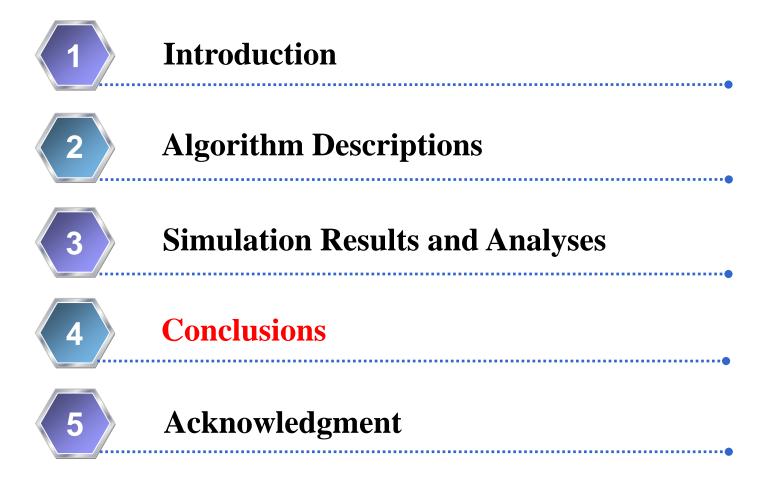
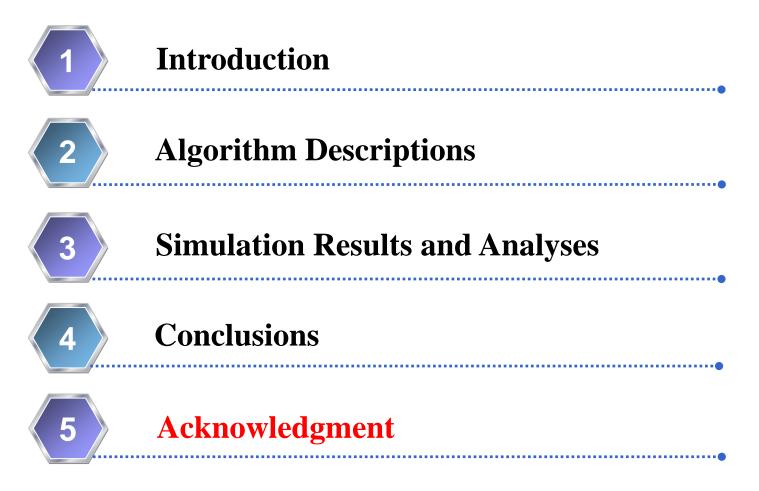



Fig. 3. Maximum throughput versus P_0 with different N and α



◆This paper has proposed a co-channel scheme and a low complexity algorithm to jointly design energy and information beamforming of the transceiver for FD-WPCN with two users, which achieves uninterrupted information transmission and also self-energy recycling.

◆ Formulated quasi-concave optimization problem to maximize the system throughput. In addition, the global optimum can be achieved via a series of efficient variable substitution operations and exploiting iterative algorithm. Finally, numerical results have showed the superiority of our proposed algorithm to the reference schemes.

This work was supported by the National Natural Science Foundation of China under Grant No.61471057

Thank you for your attention