Minimizing power consumption in virtualized cellular networks

G. Nardini1, A. Virdis1, \textbf{N. Iardella}1, A. Frangioni2, L. Galli2, G. Stea1

1. Dipartimento di Ingegneria dell'Informazione, University of Pisa
2. Dipartimento di Informatica, University of Pisa
Towards 5G: The C-RAN

- Split
- Centralize
- Virtualize

- Greener
- Cheaper
- Smarter
A smart, central manager decides *dynamically* to switch on/off eNBs.

«There are no UEs»

«Power off»

Power Manager
Our contribution

• Dynamic power management algorithm
• A Global Power Manager that runs the algorithm*

*The GPM is part of the framework described in:
• N. Iardella, et al., "A testbed for flexible and energy-efficient resource management with virtualized LTE-A nodes", CLEEN 2017, Turin, Italy, 21-22 June 2017
Software Framework

- Monitoring Library contains network status and information;
- Global Power Manager reconfigures and manages all the Nodes;
- A Local Power Manager controls (e.g. a single Node);
- A Node serves a cell and allocates resource to its Users.

* The Global Scheduler operation is described in:
Software Framework
Software Framework

Monitoring Library contains network status and information:

- **Node status** (e.g. on/off)
- **Usage stats** (i.e. requested data rate)
- **Expected traffic profiles**
 - Historical records
 - Context information (e.g. upcoming events)
GPM algorithm

Power consumed by node α:

$$p_a = P_a^{\text{base}} + P_a^{\text{RB}} \cdot n_a$$

Where n_α is the number of allocated RBs

$$n_\alpha \leq M$$
GPM algorithm

\[a \in S(c) \]

\[c \in C \]

Average SINR perceived by \(c \), from node \(a \):

\[\text{SINR}(n)_c^a = \frac{P_{a,c}}{N_G + \sum_{x \neq a} P_{x,c} \Delta_{a,x} / n_a} \]

Where the average number of overlapping RBs is:

\[\Delta_{a,x} = \left(n_a n_x \right) / M \]
GPM algorithm

\[a \in S(c) \]

We obtain the data rate from the SINR through link-level measurements:

\[\eta_{MAX} \]

[F(SINR) [Mbps/RB]]

[SINR [dB]]
GPM algorithm

- Optimization problem:

\[
\begin{align*}
\min & \sum_a P_a^{base} x_a + P_a^{RB} n_a \\
\sum_a F\left(SINR\left(n\right)_c^a\right) m_c^a & \geq D_c \quad \forall c \in C \quad (i) \\
\sum_c m_c^a & \leq n_a \quad \forall a \quad (ii) \\
0 & \leq m_c^a \leq M \quad \forall (a, c) \in Q \quad (iii) \\
0 & \leq n_a \leq M x_a \quad \forall a \quad (iv) \\
x_a & \in \{0, 1\} \quad \forall a \quad (v)
\end{align*}
\]
GPM algorithm

- Problem is non-linear and non-convex
- We discretize the interval of possible interference values into K portions

$$\text{SINR}(n)^a_c = \frac{P_{a,c}}{N_G + \sum_{x \neq a} P_{x,c} \Delta_{a,x} / n_o}$$

$$\rho^a_{c,0} \leq \rho^a_{c,1} \leq \ldots \leq \rho^a_{c,k-1} \leq \rho^a_{c,\text{max}}$$

Discrete data rate values

$$\beta^a_{c,i} = F \left(\frac{P^c_a}{\rho^a_{c,i}} \right)$$
Simulation scenario

- Each cell hosts 1 macro and 2 micro eNBs
- 50 MHz bandwidth (250 RBs)

<table>
<thead>
<tr>
<th></th>
<th>Macro eNB</th>
<th>Micro eNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx Power</td>
<td>46 dBm</td>
<td>38 dBm</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>18 dBm</td>
<td>11 dBm</td>
</tr>
<tr>
<td>P^{off}</td>
<td>101 W</td>
<td>33.88 W</td>
</tr>
<tr>
<td>P^{base}</td>
<td>200 W</td>
<td>48.65 W</td>
</tr>
<tr>
<td>P^{RB}</td>
<td>3.332 W/RB</td>
<td>0.384</td>
</tr>
</tbody>
</table>
Simulation scenario

- 2 baselines: micros always on/always off
- Three configurations:
 1. Macros always on and centroids always prefer macros;
 2. Macros always on, centroids can use micros even if macro's signal is better (hence privileging power saving);
 3. Macros can be turned off.
- $K=4, 6, 8, 10$
Results: power consumption (conf. 1)

- All Micros ON
- All Micros OFF
- GPM\(K=4\)
- GPM\(K=6\)
- GPM\(K=8\)
- GPM\(K=10\)

Power [W] vs. Per Cell Offered Load [Mbps]

- All Micros ON
- All Micros OFF
- GPM\(K=4\)
- GPM\(K=6\)
- GPM\(K=8\)
- GPM\(K=10\)

Power [W] vs. Per Cell Offered Load [Mbps]
Solving time

• Average solving time stays below 100 s
• The problem is solvable at the timescales the GPM is meant to run
Results: power consumption (conf. 2)
Results: power consumption (conf. 3)
Activation patterns

• Config 1
 – All macros on
 – Some micros on
 – Centroids prefer macros
 – Centroids use micros only when close
Activation patterns

• **Config 2**
 - All macros on
 - Some micros on
 - Centroids prefer micros
 - All centroids use micros
Activation patterns

- **Config 3**
 - Macros can be turned off
 - Centroids prefer macros
 - All macros are off
Conclusions

• We presented a framework for power optimization of virtualized cellular networks

• We presented an algorithm based on an optimization model

• Our results show that:
 – The solution time for the optimization model is affordable
 – The framework discovers and applies the min-power configuration at various loads in hetnet deployments
 – Power saving depends on configuration, and is major if macros can be turned off when load is low

3 June 2018
«Flexible and efficient hardware/software platforms for 5G network elements and devices»

- Project number: 671563
- Project Coordinator: Intel
- Technical Management: CTTC
- Call / topic: H2020-ICT-2014-2 /ICT-14-2014Objective 1.1
- Duration: 24 months
- Start: 01 July 2015

- Industry partners
 - Intel Mobile Comm. (DE)
 - Alcatel Lucent (DE)
 - Ericsson (SE)
 - NEC (UK)
 - Telecom Italia (IT)

- Research institutes
 - CEA (FR)
 - CNIT (IT)
 - CTTC (ES)
 - Fraunhofer Institut (DE)
 - iMinds (BE)
 - VTT (FI)

- SMEs
 - Sequans (FR)
 - TST Sistemas (ES)
 - WINGS (GR)

- Universities
 - KU Leuven (BE)
 - Univ. Carlos III de Madrid (ES)
 - University of Pisa (IT)
Thanks for your attention!

Useful contacts:

Giovanni Stea
giovanni.stea@unipi.it

Niccolò Iardella
niccolo.iardella@unifi.it
Global Power Manager

ML

Node status
Traffic profiles

Global Power Manager

Management commands

Nodes

Clustering Info

GS
Local Power Manager

- ML (Node status)
- GPM (Management commands)

- BBU Machine
 - BBU Process
 - BBU Management
 - Machine Management
 - Process Management

- RRH Management
 - Machine Management
 - Process Management

- RRH Machine
 - RRH Process

3 June 2018
CLEEN 2018, Porto, Portugal
Local Power Manager

- LPM
- Hypervisor
- Machine
- Process

PM

VM

Switch on

Switch on

Start

Notification

Notification