

Minimizing power consumption in virtualized cellular networks

- G. Nardini¹, A. Virdis¹, N. Iardella¹, A. Frangioni², L. Galli², G. Stea¹
- 1. Dipartimento di Ingegneria dell'Informazione, University of Pisa
- 2. Dipartimento di Informatica, University of Pisa

Towards 5G: The C-RAN

Power Management

Our contribution

- Dynamic power management algorithm
- A Global Power Manager that runs the algorithm*

- *The GPM is part of the framework described in:
- N. Iardella, et al., "A testbed for flexible and energy-efficient resource management with virtualized LTE-A nodes", CLEEN 2017, Turin, Italy, 21-22 June 2017

Software Framework

Node Operation

- Monitoring Library contains network status and information;
- Global Power Manager reconfigures and manages all the Nodes;
- A Local Power Manager controls (e.g. a single Node);
- A Node serves a cell and allocates resource to its Users.
- * The Global Scheduler operation is described in:
- G. Nardini, et al., "Scalability and energy efficiency of Coordinated Scheduling in cellular networks towards 5G", CLEEN 2017, Turin, Italy, 21-22 June 2017

Software Framework

Node ML **GPM** GS LPM (MA/LS) ■Pull status/stats -Status/stats--Turn on--Turn on-----Activate----Node Status--Scheduling Requests--Pull Scheduling Requests--Scheduling Requests--Scheduling Commands--Usage Stats-✓Pull status/stats -Status/stats--Turn off -Turn off-

Software Framework

Node Operation

Monitoring Library contains network status and information:

- Node status (e.g. on/off)
- *Usage stats* (i.e. requested data rate)
- Expected traffic profiles
 - Historical records
 - Context information (e.g. upcoming events)

Power consumed by node *a*:

$$p_{a} = P_{a}^{base} + P_{a}^{RB} \cdot n_{a}$$
Power [W]
$$P^{base}$$

$$P^{off}$$
RBs

Where n_a is the number of allocated RBs

$$n_a \leq M$$

Average SINR perceived by *c*, from node *a*:

$$SINR(n)_{c}^{a} = \frac{P_{a,c}}{N_{G} + \sum_{x \neq a} P_{x,c} \Delta_{a,x} / n_{a}}$$

Where the average number of overlapping RBs is:

$$\Delta_{a,x} = (n_a n_x) / M$$

We obtain the data rate from the SINR through link-level measurements:

Optimization problem:

$$\min \sum_{a} P_a^{base} x_a + P_a^{RB} n_a$$

$$\sum_{a} F\left(SINR\left(n\right)_{c}^{a}\right) m_{c}^{a} \ge D_{c} \quad \forall c \in C$$
 (i)

$$\sum_{c} m_{c}^{a} \le n_{a} \qquad \forall a \qquad (ii)$$

$$0 \le m_c^a \le M \qquad \qquad \forall (a, c) \in Q \quad (iii)$$

$$0 \le n_a \le Mx_a \qquad \forall a \qquad (iv)$$

$$x_a \in \{0,1\} \qquad \forall a \qquad (v)$$

- Problem is non-linear and non-convex
- We discretize the interval of possible interference values into K portions

Simulation scenario

- Each cell hosts 1 macro and 2 micro eNBs
- 50 MHz bandwidth (250 RBs)

Table 1 - Power model parameters

	Macro eNB	Micro eNB
Tx Power	46 dBm	38 dBm
Antenna gain	18 dBm	11 dBm
P^{off}	101 W	33.88 W
P^{base}	200 W	48.65 W
P^{RB}	3.332 W/RB	0.384

Simulation scenario

- 2 baselines: micros always on/always off
- Three configurations:
 - Macros always on and centroids always prefer macros;
 - Macros always on, centroids can use micros even if macro's signal is better (hence privileging power saving);
 - 3. Macros can be turned off.
- K=4, 6, 8, 10

Results: power consumption (conf. 1)

Solving time

- Average solving time stays below 100 s
- The problem is solvable at the timescales the GPM is meant to run

Results: power consumption (conf. 2)

Results: power consumption (conf. 3)

Activation patterns

Config 1

- All macros on
- Some micros on
- Centroids prefer macros
- Centroids use micros only when close

Activation patterns

• Config 2

- All macros on
- Some micros on
- Centroids prefer micros
- All centroids use micros

Activation patterns

Config 3

- Macros can be turned off
- Centroids prefer macros
- All macros are off

Conclusions

- We presented a framework for power optimization of virtualized cellular networks
- We presented an algorithm based on an optimization model
- Our results show that:
 - The solution time for the optimization model is affordable
 - The framework discovers and applies the min-power configuration at various loads in hetnet deployments
 - Power saving depends on configuration, and is major if macros can be turned off
 when load is low

https://www.flex5gware.eu

«Flexible and efficient hardware/software platforms for 5G network elements and devices»

- Project number: 671563
- Project Coordinator: Intel
- Technical Management: CTTC
- Call / topic: H2020-ICT-2014-2 /ICT-14-20140bjective 1.1
- Duration: 24 months
- Start: 01 July 2015

Industry partners

- Intel Mobile Comm. (DE)
- Alcatel Lucent (DE)
- Ericsson (SE)
- NEC (UK)
- Telecom Italia (IT)

Research institutes

- CEA (FR)
- CNIT (IT)
- CTTC (ES)
- Fraunhofer Institut (DE)
- iMinds (BE)
- VTT (FI)

SMEs

- Sequans (FR)
- TST Sistemas (ES)
- WINGS (GR)

Universities

- KU Leuven (BE)
- Univ. Carlos III de Madrid (ES)
- University of Pisa (IT)

Thanks for your attention!

Università di Pisa

Useful contacts:

Giovanni Stea giovanni.stea@unipi.it

Niccolò Iardella niccolo.iardella@unifi.it

Monitoring Library

Global Power Manager

Local Power Manager

Local Power Manager

