A Hierarquical MEC Architecture: Experimenting the RAVEN Use-Case

D. Sabella (Intel), N. Nikaein and A. Huang (Eurecom), J. Xhembulla and G. Malnati (Politectionco di Torino), S. Scarpina (Telecom Italia)

CLEEN 2018 Porto, 3 June 2018

Presenter: Leonardo Gomes Baltar Intel

Introduction and Objective

- General or high-level objective: provide user-oriented service with quality of experience
 - Heterogeneous classes of users, consumers, machines, other services
- Service-level objective: provide optimized video streaming service using commercial terminals
 - Perceived live video quality
 - High traffic demand, low latency, real-time network information, guarantee QoS, etc.
- Solution-level objective: real-time adaptive video streaming employing a MEC platform hierarchical architecture and aware of RAN conditions
 - RAVEN Radio Aware Video optimization in a fully Virtualized Network

ETSI MEC PoC

PoC#1: Video User Experience Optimization via MEC - A Service Aware RAN MEC PoC

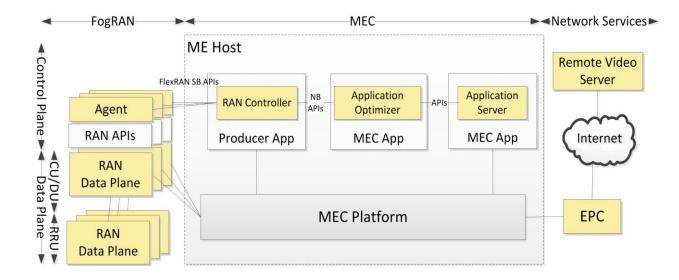
PoC#2: Edge Video Orchestration and Video Clip Replay via MEC

PoC#3: RAVEN - Radio Aware Video Optimization in a Fully Virtualized Network

PoC#4: FLIPS - Flexible IP-based Services

PoC#5: Enterprise Services

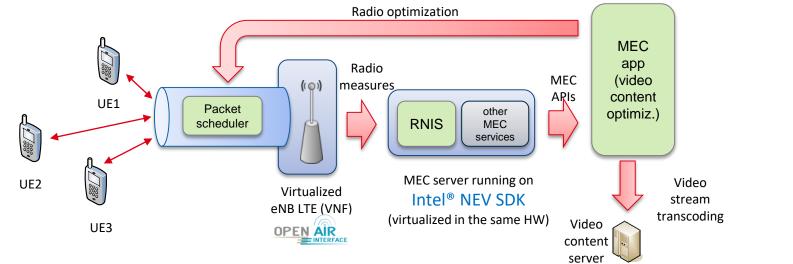
- PoC#6: Healthcare Dynamic Hospital User, IoT and Alert Status Management
- PoC#7: Multi-Service MEC Platform for Advanced Service Delivery


PoC#8: Video Analytics

- PoC#9: MEC platform to enable low-latency Industrial IoT
- PoC#10: Service-Aware MEC Platform to Enable Bandwidth Management of RAN
- PoC#11: Communication Traffic Management for V2X
- PoC#12: MEC platform to enable OTT business

Hierarchical MEC Architecture

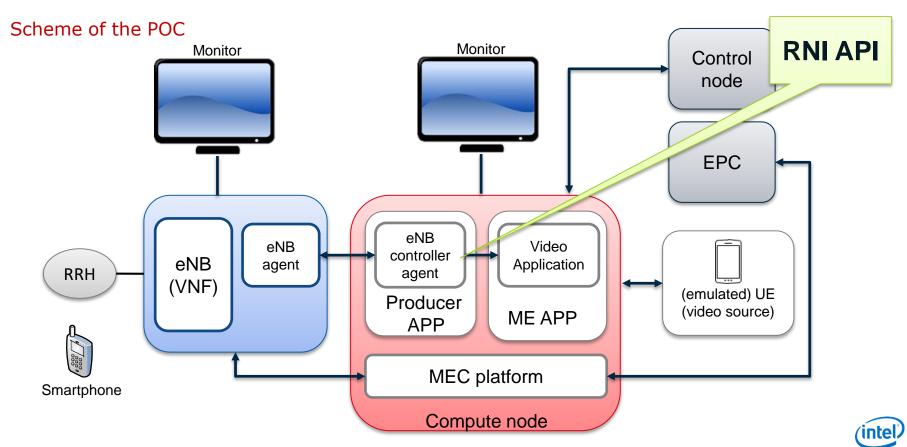
- LTE-based but general design suitable for future RAN technologies (e.g. 5G NR)
- Three components: FogRAN (Cloud-RAN), MEC (incl. RAN Controller), Network services
- Realized through FlexRAN software defined-RAN: defines southbound APIs and control protocols for interfacing RAN controller and agents
- Agents gather real-time radio information



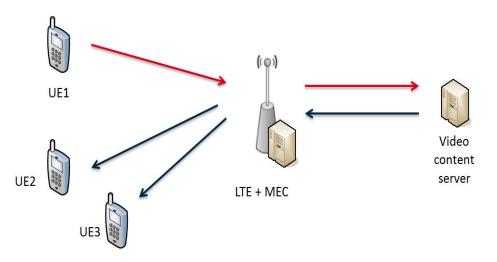
PoC#3 - RAVEN – Radio Aware Video Optimization in a Fully Virtualized Network

[TIM - Intel UK Corporation - Eurecom - Politecnico di Torino]

- Video optimization application aware of the radio conditions in the cell
- MEC application co-located with eNB and communicating with video content server.
- Quality of the video streams adjusted according to radio conditions of users.

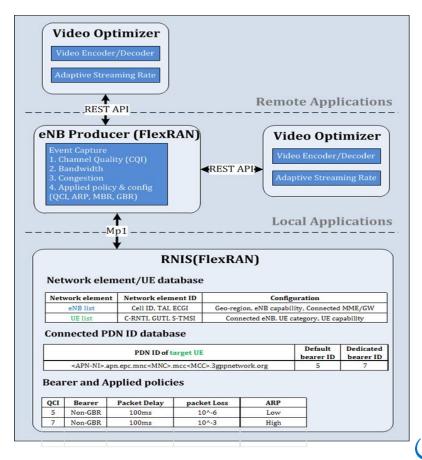


 Video streams and quality perceived by users improved thanks to proximity and usage of MEC Video Optimization Application


PoC#3 - RAVEN – Radio Aware Video Optimization in a Fully Virtualized Network

[TIM - Intel UK Corporation - Eurecom - Politecnico di Torino]

RAVEN use case demonstration

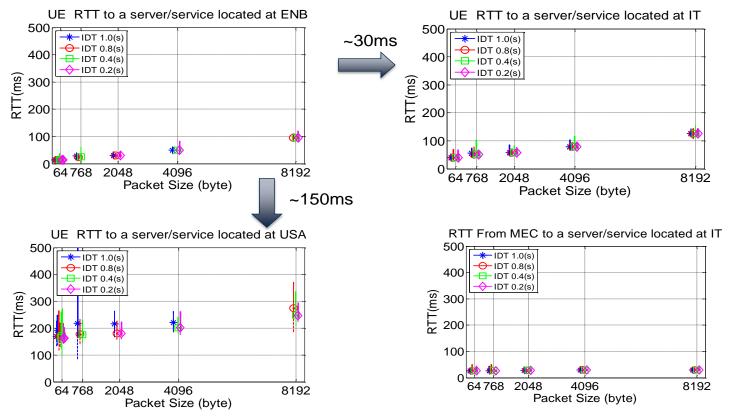

- Three steps:
- One UE records and sends a video stream to the video server in uplink (e.g. UE1);
- Server receives and distributes video stream to the registered UEs in downlink (e.g. UE2 and UE3);
- 3. MEC platform captures the congestion or channel quality event and sends a trigger to the application optimizer, so that adjusts accordingly the quality of the video streams at the application server

RAVEN: RNIS API in eNB producer

- Rich set of RNIS API specified and developed by ETSI MEC
- Both RESTFUL and message-based Application API supported
- Event-driven, periodic, and one-shot
- Support eNB status monitoring and fine-grain configuration
- Video optimizer registers to a set of events at the eNB producer

RAVEN: tests of RNI implementation

• Measured maximum sustainable TCP bitrate with discrete congestion level based on CQI.


CQI	Congestion Level	Downlink (Mb/s)	Uplink (Mb/s)
11- 15	Low	15.224	8.08
9- 11	Low	11.469	6.04
7-9	Medium	9.88	4.47
4- 7	Medium	5.591	2.49
0-4	High	1.08	0.69

 Measured results reveals the maximum sustainable bitrate as a function of user channel quality indicator (CQI), which is combined with the cell congestion level to adapt the streaming quality

RAVEN PoC: Measured packets RTT

Comparison of two MEC deployment options and related performances

Conclusions

- Proposed hierarchical MEC architecture demonstrated via PoC of RAVEN use-case
- PoC assembled in a small-scale open-source virtualized LTE environment and using commercial terminals
- PoC demonstrates real-time adaptive video streaming empowered by Edge Computing
- Experiments demonstrate the benefit of radio information in optimizing the video streaming
- Quality perceived improved with the help of RNI API specified by ETSI MEC

Thank you!

dario.sabella@intel.com