

## **Cross-modular Applications of AI and ML in B5G networks**

Edwin Yaqub, RapidMiner Research







#### **Presentation Layout**

- Introduction to (EU-H2020) project ARIADNE
  - Vision
  - Use Cases
- Artificial Intelligence (AI)/Machine Learning (ML) Application Areas
  - AI/ML Landscape and Disciplines
  - Predictive Analytics, Prescriptive Analytics and Predictive Optimizations
- Approaching AI and ML
- Cross-Modular Concerns
- Standardization Initiatives
- RapidMiner Data Science Platform
  - Automated ML
  - Management and Orchestration Tools

#### Introduction to Project ARIADNE









## @ARIADNE

Coordinator

Dr. Halid Hrasnica Eurescom, Heidelberg, Germany

**Scientific and Technical Project Manager** 

Prof. Dr. Angeliki Alexiou University of Piraeus Research Centre, Athens, Greece

Website: <a href="https://www.ict-ariadne.eu">https://www.ict-ariadne.eu</a>

**Twitter:** @Ariadnelct

Email: contact@ict-ariadne.eu





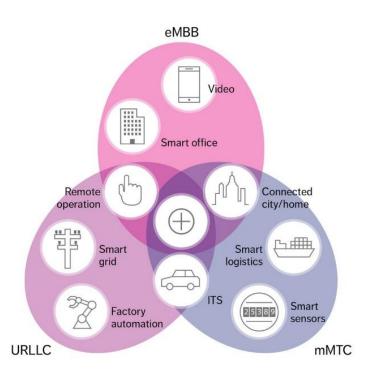




#### Introduction to ARIADNE project

Vision

**Ar**tificial Intelligence **A**ided **D**-band **N**etwork for 5G Long Term **E**volution is a H2020 5G PPP project which aims to bring together **a novel high frequency radio architecture**, an advanced wireless **connectivity based on reconfigurable metasurfaces**, and an **enhanced network management supported by AI** to establish a new type of **intelligent communications system beyond 5G**.







#### RoadMap: Vision to Objectives and Actions

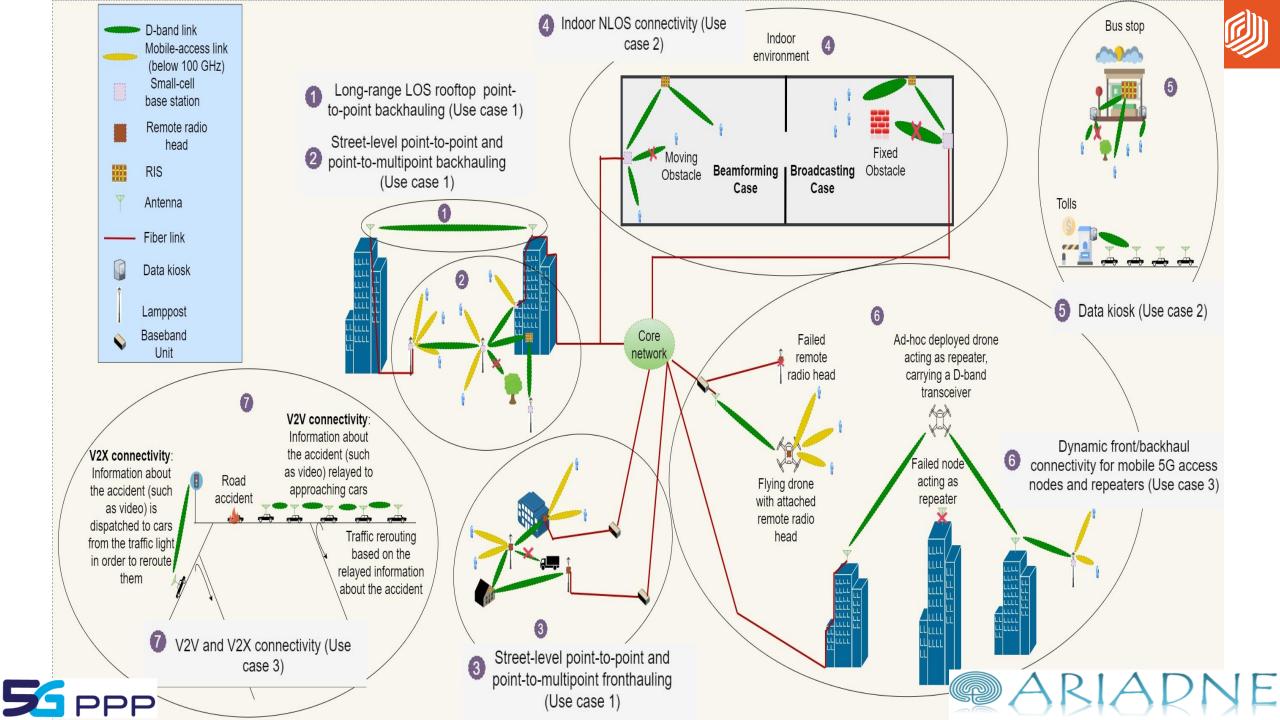
| Pillars                                                         | Objectives                                                                                  | Actions                                                                                                                | Demos                              | Main KPIs                                                             |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------|
| D-band for 100<br>Gbit/s reliable<br>wireless<br>connectivity   | 100 Gbit/s capable, energy<br>and spectral-efficient<br>D-Band wireless B5G<br>networks     | D-band front-end Baseband DSP Adaptive spatial SP High gain D-band antennas Channel modelling                          | P2P D-band LOS<br>outdoor demo     | 100 Gbps throughput 100m range Massive number of devices Zero latency |
| Communications<br>beyond the<br>Shannon<br>paradigm             | Ultra-reliable D-band<br>connectivity and<br>reconfigurability<br>in all usage environments | Reconfigurable adaptive metasurface design Beamforming for LOS and NLOS links MAC design                               | Metasurface-based<br>D-band demo   |                                                                       |
| Artificial<br>Intelligence-<br>based wireless<br>system concept | Transform networks B5G<br>into intelligent<br>connectivity/computing<br>platforms           | • ML for channel modelling • ML-based resource allocation and energy efficiency ML for network deployment optimization | Intelligent D-band<br>Network Demo |                                                                       |





#### **Use Cases**

- Use case 1: Outdoor backhaul/fronthaul networks of fixed topology
  - Scenario 1: Long-range LOS rooftop point-to-point backhauling.
  - Scenario 2: Street-level point-to-point and point-to-multipoint backhauling/fronthauling.
- Use case 2: Advanced NLOS connectivity based on metasurfaces
  - Scenario 1: Indoor advanced NLOS connectivity based on metasurfaces
  - Scenario 2: Data kiosk
- Use case 3: Adhoc connectivity in moving network topology
  - Scenario 1: Dynamic front/backhaul connectivity for mobile 5G access nodes and repeaters
  - Scenario 2: V2V and V2X connectivity



#### **AI/ML Application Areas**











#### **AI/ML Application Areas**

- Where can we apply AI/ML?
  - Channel modeling
    - Estimating parameters of the channels
    - Profiling adverse effect of weather on channels
  - Beamforming (assigning beams to users) and ray tracing (follow a mobile node)
  - Modeling behavior of RIS (Reconfigurable Intelligent Surface) that uses Metasurface.
  - Network optimization
    - Resource allocation or Route finding/scheduling using performance criteria (e.g. energy saving, reliability)
    - Placement of radio network components (e.g. to maximize signal strength at key operational areas)
    - Performing offline and online optimizations (for dynamic cases)
    - Optimizing with and without RIS (for indoor beamforming cases).





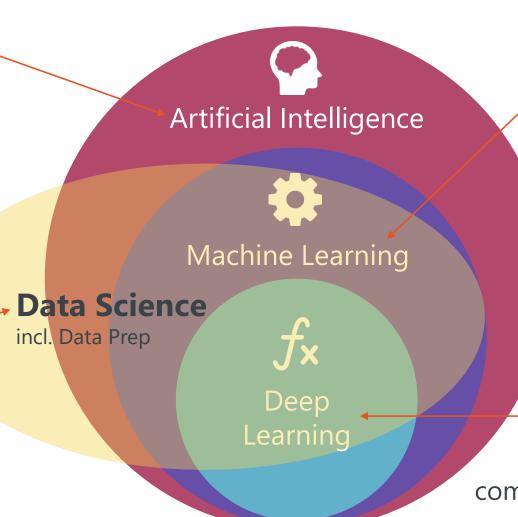
#### **AI/ML Landscape**

#### **Artificial Intelligence**

Any technique which enables computers to mimic human behavior.

#### **Data Science**

Covers the practical application of advanced analytics, statistics, machine learning, and the necessary data preparation in a business context.



#### **Machine Learning**

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

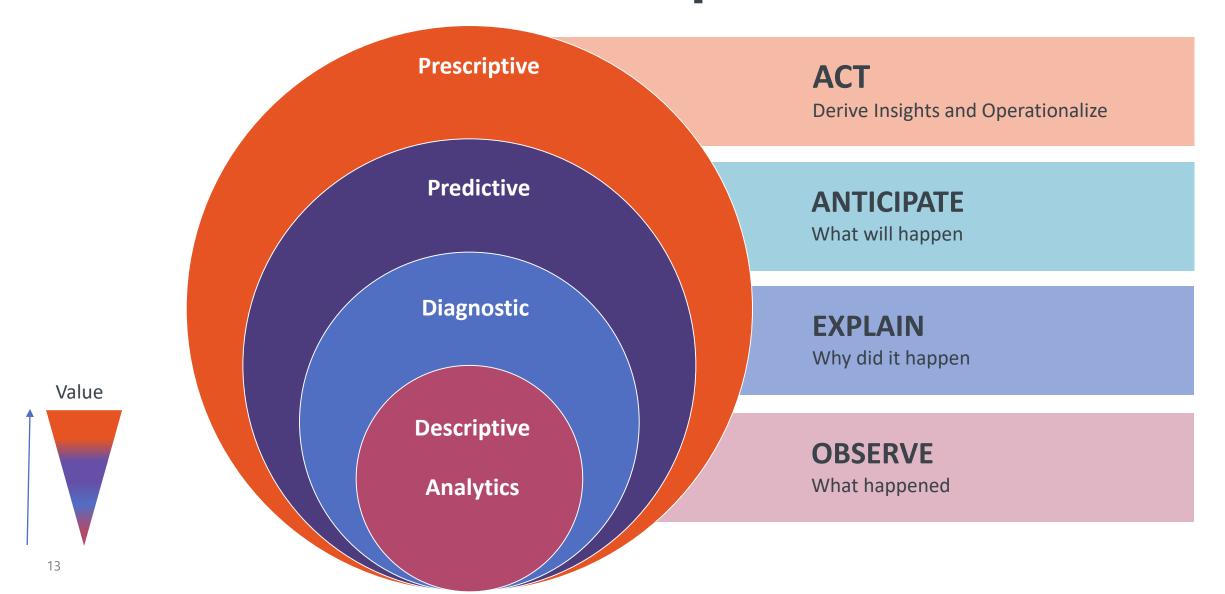
#### **Deep Learning**

Subset of ML which make the computation of multi-layer neural networks feasible.





## **AI/ML Disciplines**







#### AI/ML Application Areas (revisited)

#### Predictive Analytics

- Forecasting
  - Demand for connections or data transmission rates at different time periods
  - Demand for energy consumption in the network
- Predicting
  - Bottlenecks at different nodes and congestion in the network
  - Properties of a link: blockages, reliability, failure rate, service degradation (e.g., in terms of packet loss, effective radius, etc.)
  - Estimated parameters of a multi-path channel.
  - Attenuation level in signal quality due to weather affects.
  - Machine failures before they happen, to proactively prevent failure and save repair costs.
  - Movement (e.g. direction, angle) of user or mobile node
- Detecting
  - Anomalous traffic flows





#### AI/ML Application Areas (revisited)

#### Prescriptive Analytics

- What-If Analysis to derive insights
  - Interact with a predictive model to understand behavior of complex systems (such as a RIS or Metasurface)
  - Exploit predictive model by optimizing predictions for desired outcomes by injecting business constraints
  - Get optimal inputs (generate recipe)

#### Predictive Optimizations

- Resource allocation / Route scheduling
  - Include predictions from ML models within fitness function to get superior solutions
  - Include RIS as part of network
- Dynamic environments: Real-time planning and optimization
  - Stochastic and non-stochastic variants.

# Approaching Al and ML (Informal Tips and Standard Method)











## **Approaching Al and ML**

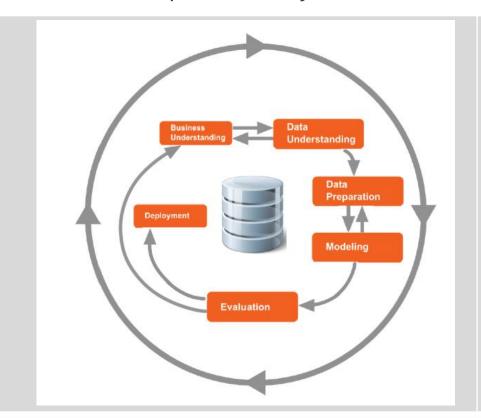
- Informal tips on how to identify AI/ML problems
  - Problems that have not been solved so far in the literature
  - Attempt to solve problems that are currently solved inefficiently
  - Objective: Solve problems efficiently and smartly
- Formal methodology to describe and solve analytics problems, especially in inter-disciplinary teams
  - CRISP-DM: CRoss-Industry Standard Process for Data Mining
  - <a href="https://en.wikipedia.org/wiki/Cross-industry\_standard\_process\_for\_data\_mining">https://en.wikipedia.org/wiki/Cross-industry\_standard\_process\_for\_data\_mining</a>





## **CRoss-Industry Standard Process for Data Mining**

- CRISP-DM is a standardized approach to tackle data mining (analytics) problems
  - Leading method used by data mining industry
  - A conceptual and cyclic method independent of data or tools



- Relationship between steps can be iterative
- Start with Business Understanding
- Normal to go back to Business Understanding before Deployment
- Experience from Deployment triggers revisions
- Subsequent solutions improve last ones.

## Cross-Modular Concerns





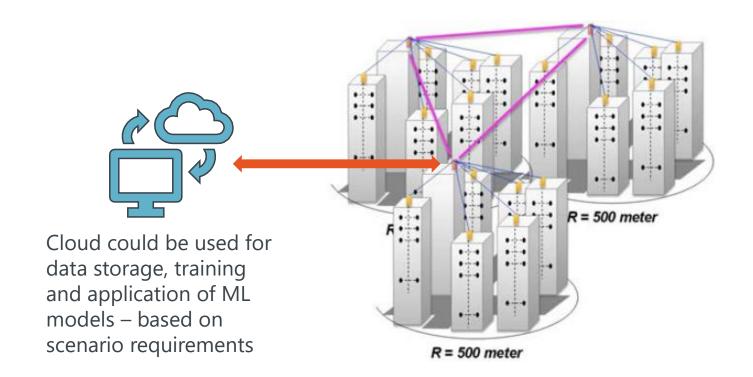






#### **AI/ML Operationalization**

- Management and Orchestration aspects of AI/ML models to be considered from start
  - Where will the models be trained, updated, deployed, and monitored?



#### **Network topology with nodes at:**

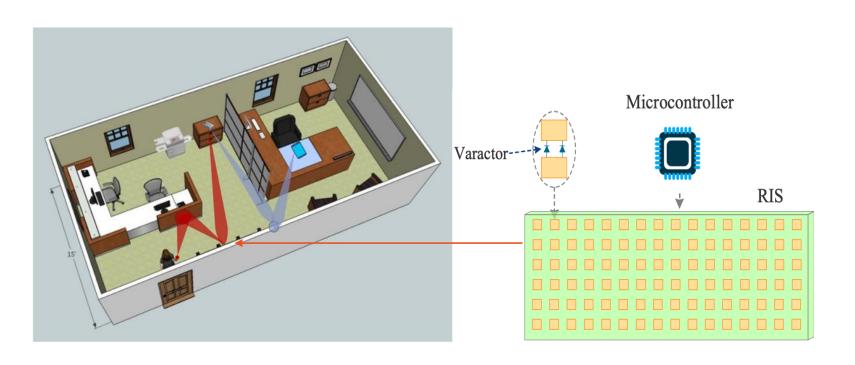
- Core (more resources to train, update and apply AI/ML models)
- **Edge** (limited resources locally)
- Cloud (store data, train, update or apply AI/ML models)





#### **AI/ML Operationalization**

Deployment aspects of AI / ML models to be considered from start

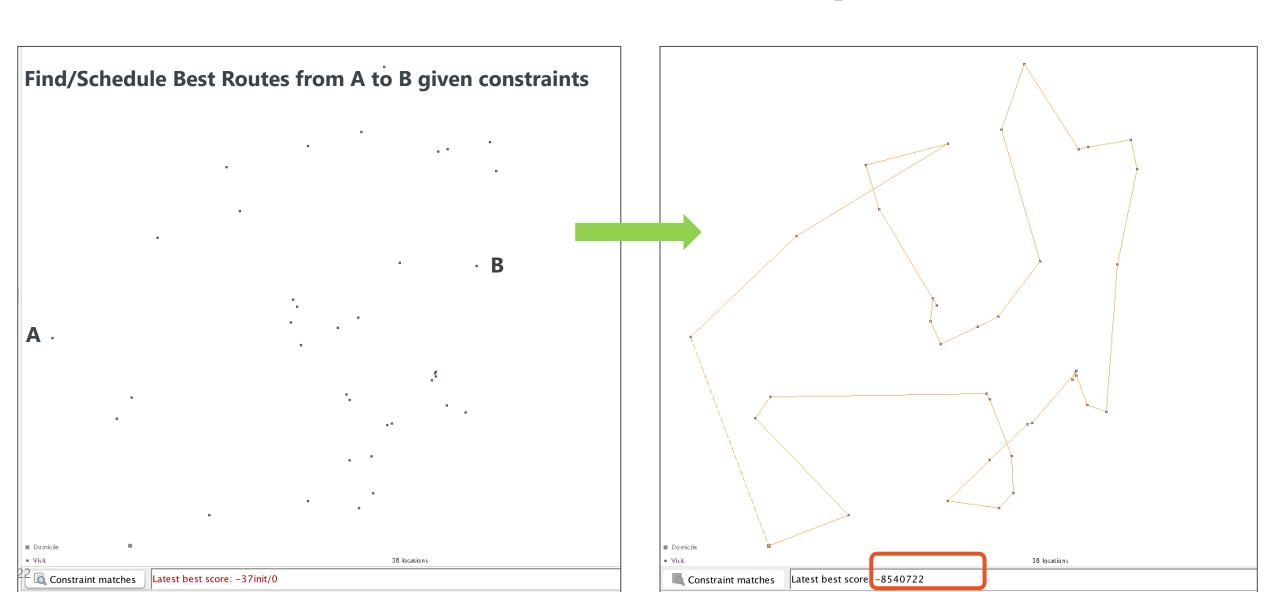


#### **Non-functional Properties:**

- Prediction / Prescription to be applied very fast at access point or at Microcontroller on chip to keep latencies very low
- 2^96 possible combinations to turn unit-cells ON or OFF (without pruning)
- Decisions to be made in microseconds













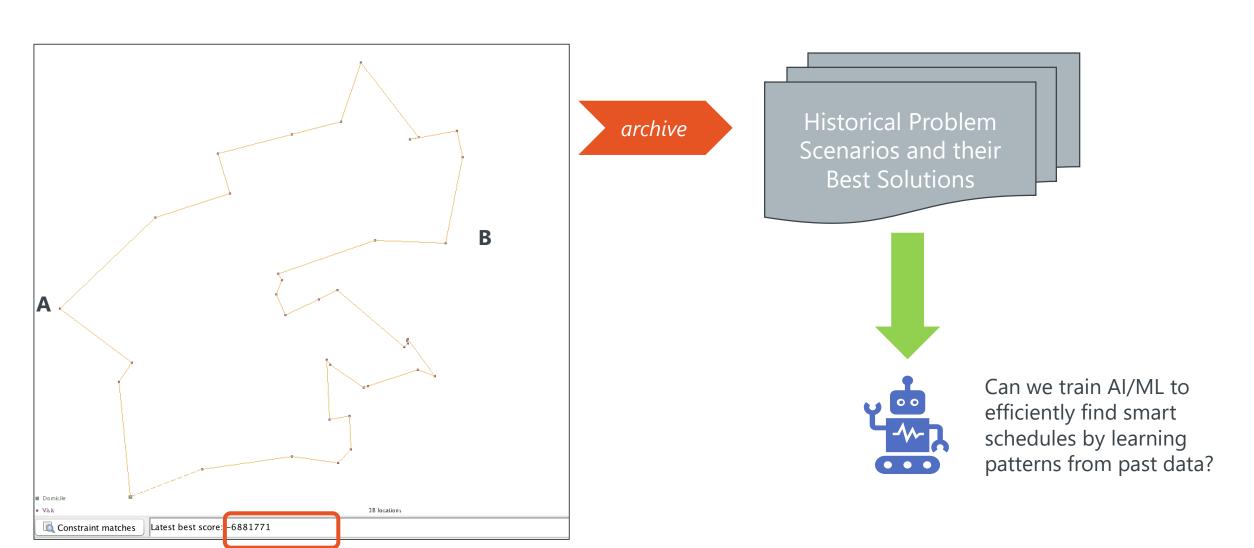
















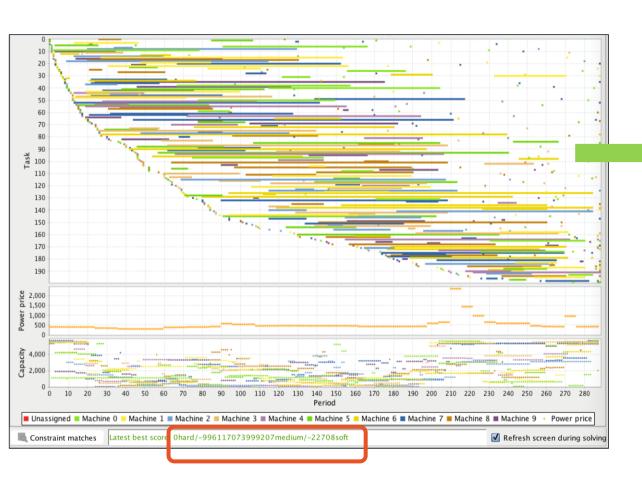
Allocate tasks to machines over time and reduce power price

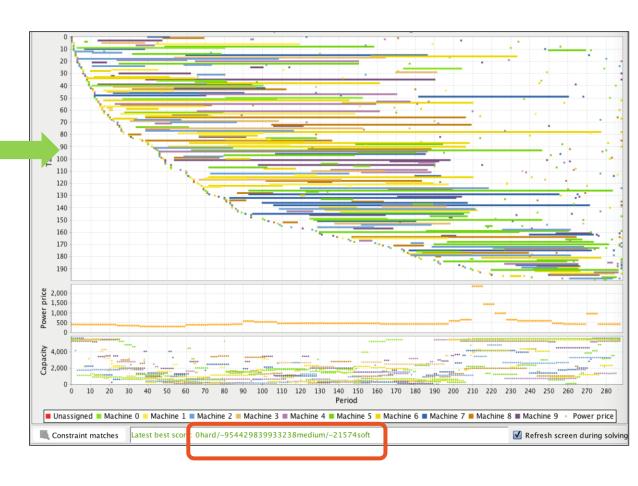


























Historical Problem
Scenarios and their
Best Solutions

Again: Can we train Al/ML to efficiently and smartly allocate resources by learning patterns from past data?





#### Further R&D Activities in ARIADNE

- Investigating
  - Deep Neural Networks and Auto Encoders
  - Reinforcement Learning
  - Deep Q Learning
  - RNN, Feedforward neural networks,
  - GANS (synthetic data generation close to real systems but anonymous)

#### **Standardization Initiatives**











#### Standardization Initiatives to the Rescue!

- Standardization initiatives (ETSI, ENI, ITU-T) provide frame of reference
  - Focus Group on Machine Learning for Future Networks including 5G
  - "Architectural framework for machine learning in future networks including IMT-2020"
    - https://www.itu.int/rec/T-REC-Y.3172/en
  - Highlights <u>challenges</u> and <u>requirements</u> and architectural <u>components</u>. Guides towards <u>standard</u> <u>methods to integrate ML functionalities in future networks</u>!
  - Key Ideas
    - Pipeline-based ML functions, ideally with declarative specifications
    - Support data retrieval and storage from various sources and sinks and ability to plugin support of more sources/sinks
    - ML functionalities to be addressed across multiple network layers/levels, standard methods to train and update models
    - Loose coupling of ML functions with network functions
    - Placement of ML functions at the core, edge or cloud
    - Orchestration of ML functions, including deployment and scaling to keep latencies low
    - Deployment time monitoring of ML models and seamless upgrades (blue-green or primary-secondary deployments)



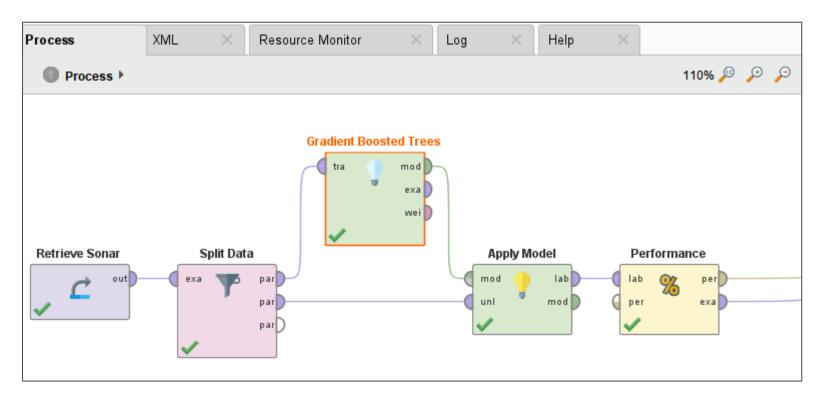






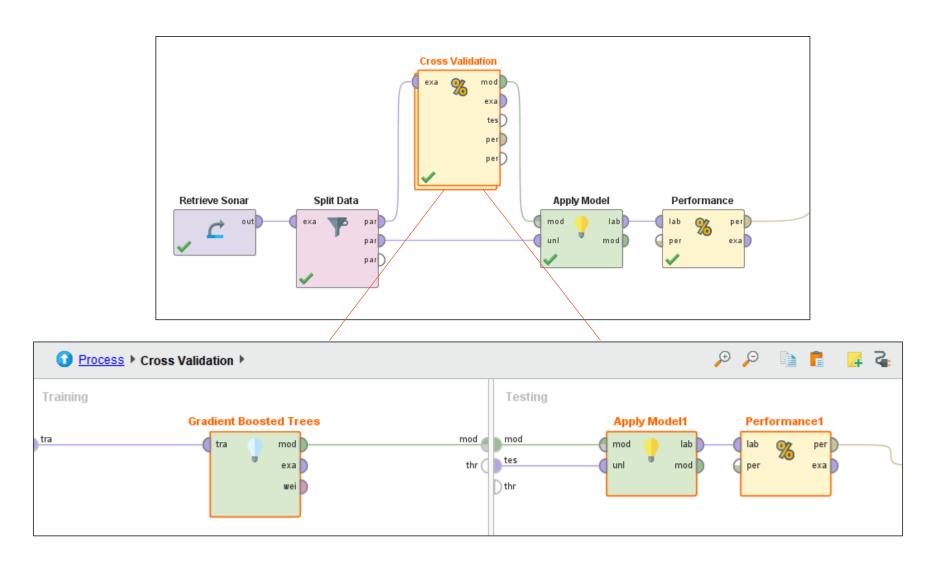


- RapidMiner Studio: Pipeline based approach with orchestration ecosystem around!
  - Visual building blocks to create AI/ML pipelines (coding-optional, highly modular)
  - Deploy pipelines as webservices in distributed and scalable execution units at Core, Edge or Cloud



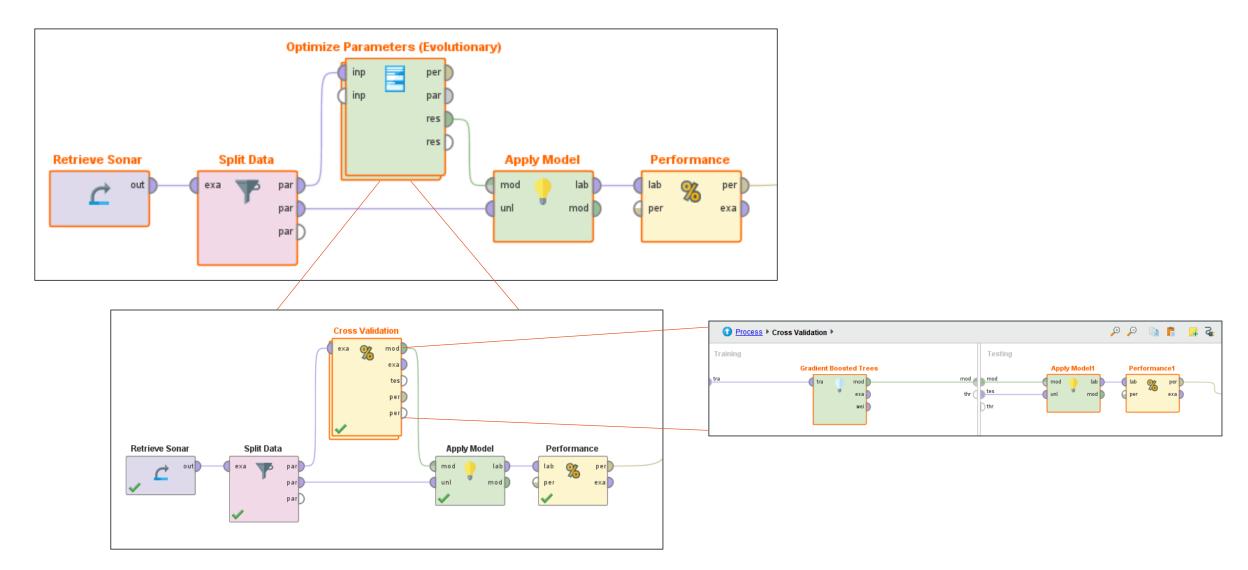














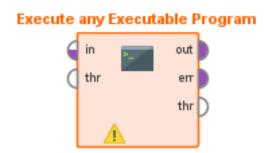


## Inclusive, Extensible and Pluggable Approach

Integrate code from popular languages/frameworks/libraries or programs









Process can be deployed as REST Webservice for integration with components

#### **Automated Machine Learning**











## **Automated Machine Learning**

- AutoModel RapidMiner Tool that democratizes ML
  - Interdisciplinary teams need enablement and guided tooling to attempt AI/ML
  - AutoModel quickly generates correct ML models and lets you evaluate them in dashboard
  - No Black-Boxing: Export pipelines or models to Design perspective and tweak it yourself
  - Lets have a short walk-through over few steps to show how easy it is!



Auto Model



Predict

Want to predict the values of a column?

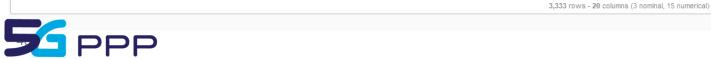
#### Clusters

Want to identify groups in your data?

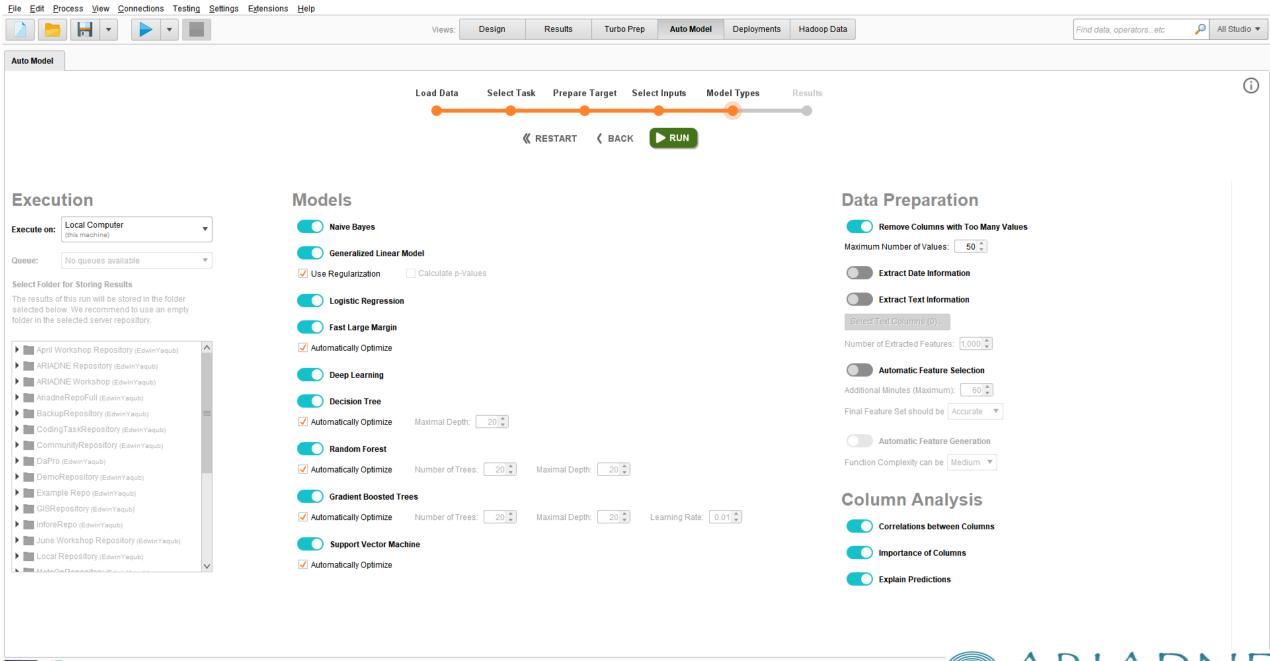
#### Outliers

Want to detect outliers in your data?

| sage | Day Mins<br>Number | Day Calls<br>Number | Day Charge | Eve Mins<br>Number | Eve Calls Number | Eve Charge | Night Mins | Night Calls | Night Charge | Intl Mins<br>Number | Intl Calls Number | Intl Charge | Customer Se | State<br>Category | Churn Flag<br>Category | Customer Ph  |
|------|--------------------|---------------------|------------|--------------------|------------------|------------|------------|-------------|--------------|---------------------|-------------------|-------------|-------------|-------------------|------------------------|--------------|
|      | 184.50000          | 97                  | 31.37000   | 351.60000          | 80               | 29.89000   | 215.80000  | 90          | 9.71000      | 8.70000             | 4                 | 2.35000     | 1           | LA                | Loyal                  | 408-335-4719 |
|      | 141.10000          | 92                  | 23.99000   | 249.10000          | 126              | 21.17000   | 136        | 73          | 6.12000      | 10.80000            | 2                 | 2.92000     | 2           | LA                | Loyal                  | 415-382-4024 |
|      | 163.50000          | 77                  | 27.80000   | 203.10000          | 102              | 17.26000   | 232        | 87          | 10.44000     | 7.80000             | 4                 | 2.11000     | 2           | NY                | Loyal                  | 415-391-1348 |
|      | 220.50000          | 94                  | 37.49000   | 239.50000          | 126              | 20.36000   | 254.30000  | 109         | 11.44000     | 5.90000             | 9                 | 1.59000     | 2           | FL                | Loyal                  | 415-357-4936 |
|      | 118.50000          | 86                  | 20.15000   | 213.90000          | 118              | 18.18000   | 132.60000  | 99          | 5.97000      | 13.40000            | 3                 | 3.62000     | 2           | FL                | Loyal                  | 510-394-8504 |
|      | 112.80000          | 133                 | 19.18000   | 199.40000          | 116              | 16.95000   | 142.70000  | 105         | 6.42000      | 10.10000            | 5                 | 2.73000     | 0           | RI                | Loyal                  | 415-360-1776 |
|      | 88.50000           | 87                  | 15.05000   | 178.80000          | 108              | 15.20000   | 228.70000  | 96          | 10.29000     | 11.50000            | 3                 | 3.11000     | 2           | NY                | Loyal                  | 415-398-8588 |
|      | 215.60000          | 78                  | 36.65000   | 195.30000          | 119              | 16.60000   | 194.40000  | 65          | 8.75000      | 3.60000             | 5                 | 0.97000     | 1           | СО                | Loyal                  | 415-400-5984 |
|      | 221.30000          | 106                 | 37.62000   | 267.60000          | 98               | 22.75000   | 111.50000  | 80          | 5.02000      | 9.30000             | 7                 | 2.51000     | 0           | VT                | Loyal                  | 415-401-4052 |
|      | 160.80000          | 91                  | 27.34000   | 155.80000          | 82               | 13.24000   | 254.30000  | 103         | 11.44000     | 8.50000             | 3                 | 2.30000     | 1           | NE                | Loyal                  | 408-347-2378 |
|      | 180.60000          | 92                  | 30.70000   | 190.90000          | 114              | 16.23000   | 295.60000  | 125         | 13.30000     | 10.30000            | 4                 | 2.78000     | 1           | NE                | Churn                  | 415-410-6791 |
|      | 94.10000           | 93                  | 16         | 147.60000          | 80               | 12.55000   | 213.50000  | 85          | 9.61000      | 10.10000            | 2                 | 2.73000     | 0           | MS                | Loyal                  | 415-340-2239 |
|      | 92.70000           | 107                 | 15.76000   | 127.80000          | 86               | 10.86000   | 225.60000  | 86          | 10.15000     | 9.90000             | 4                 | 2.67000     | 3           | wv                | Loyal                  | 415-396-1106 |
|      | 272.50000          | 119                 | 46.33000   | 226.10000          | 94               | 19.22000   | 159.10000  | 94          | 7.16000      | 16.40000            | 5                 | 4.43000     | 3           | TN                | Loyal                  | 415-339-6477 |
|      | 141.40000          | 80                  | 24.04000   | 123.90000          | 76               | 10.53000   | 323.50000  | 88          | 14.56000     | 8.10000             | 3                 | 2.19000     | 2           | NY                | Loyal                  | 510-394-3312 |
|      | 155.20000          | 139                 | 26.38000   | 268.30000          | 79               | 22.81000   | 186.40000  | 71          | 8.39000      | 9.70000             | 4                 | 2.62000     | 3           | ОК                | Loyal                  | 510-406-5532 |
|      | 2.60000            | 113                 | 0.44000    | 254                | 102              | 21.59000   | 242.70000  | 156         | 10.92000     | 9.20000             | 5                 | 2.48000     | 3           | OK                | Loyal                  | 510-403-1128 |

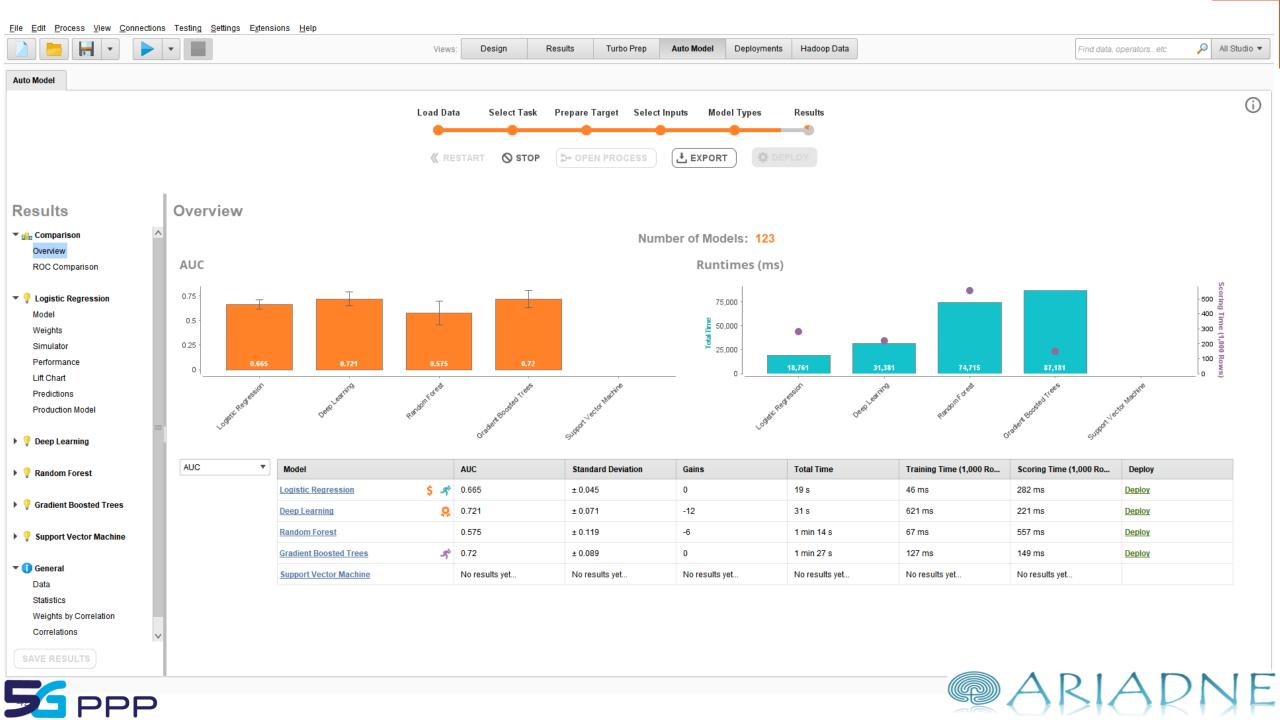


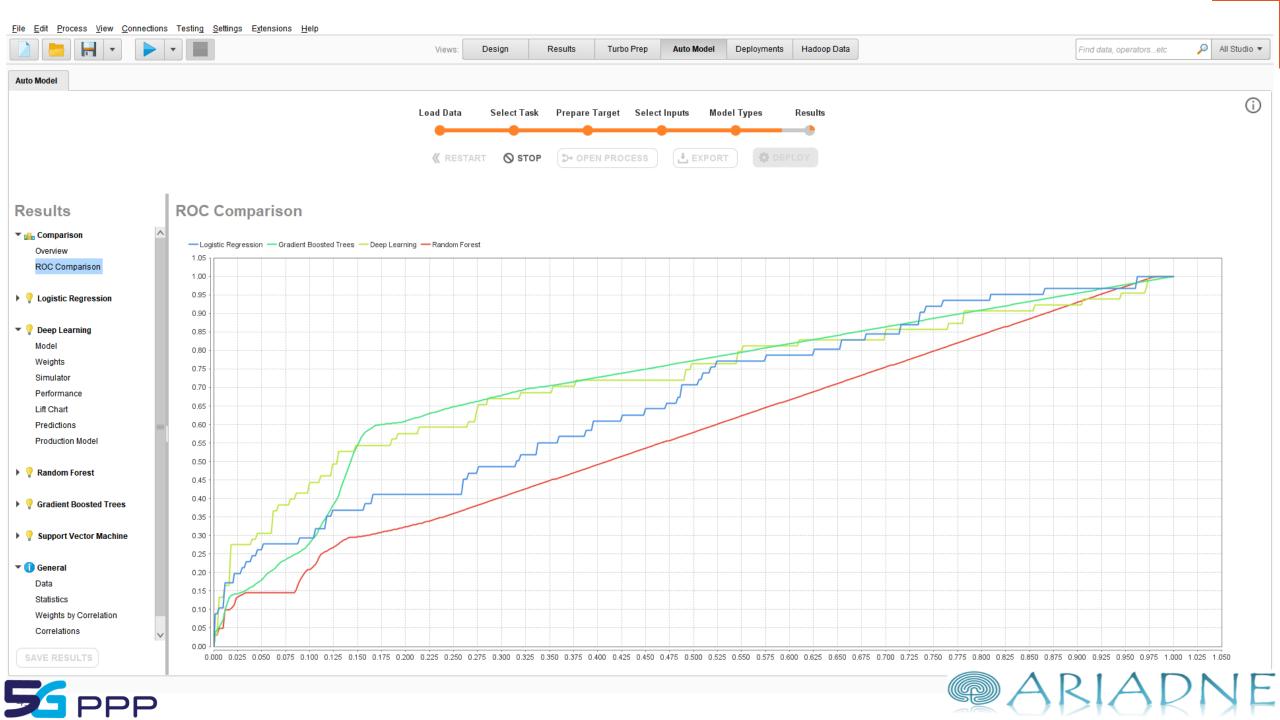


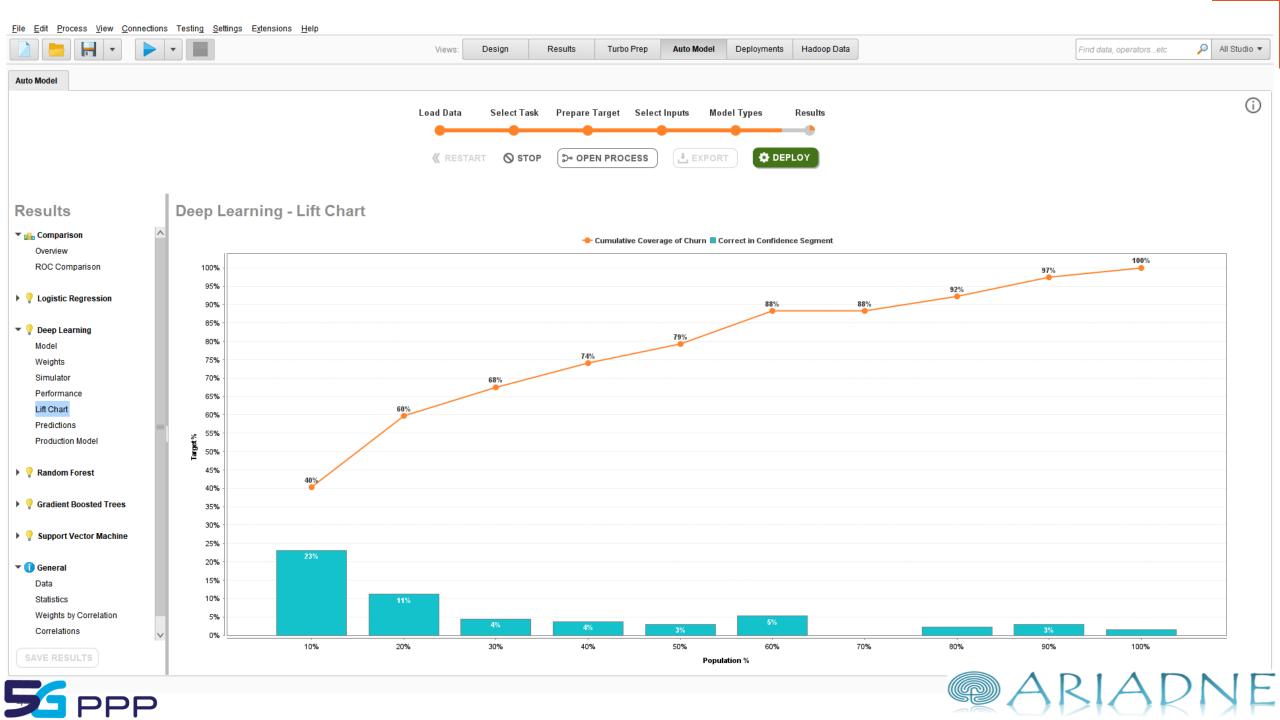


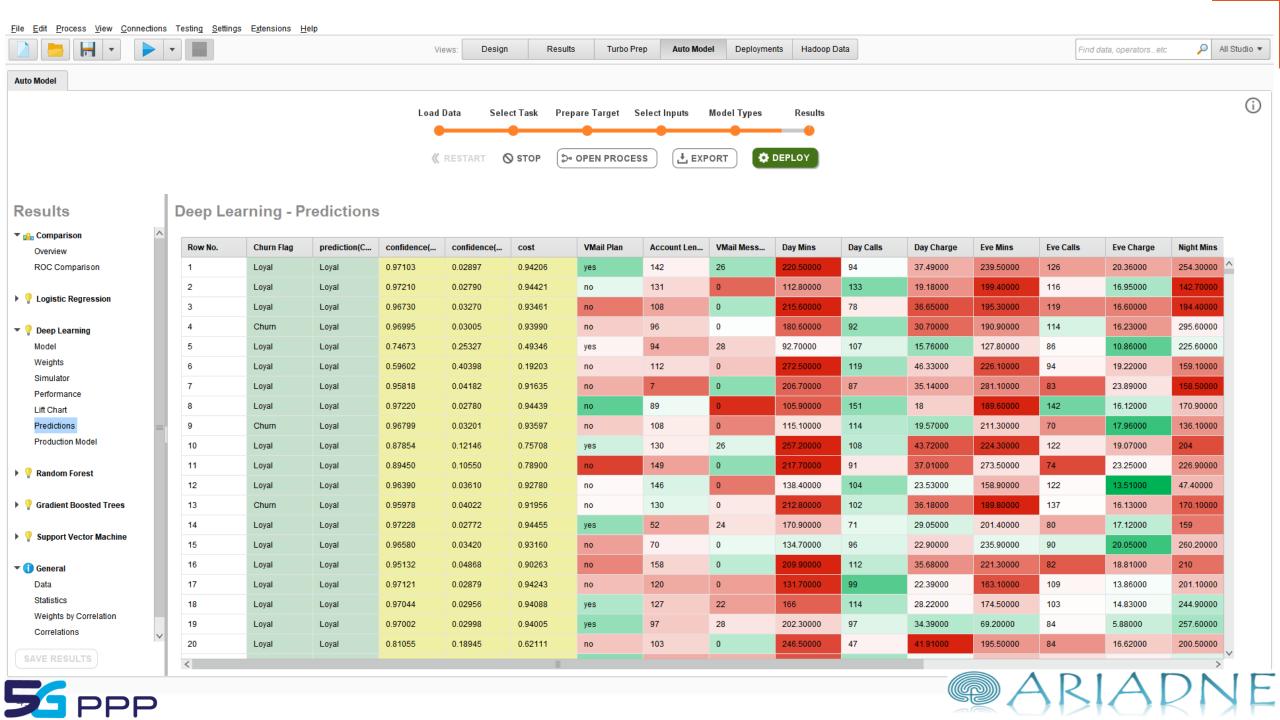












### **Management and Orchestration Tools**



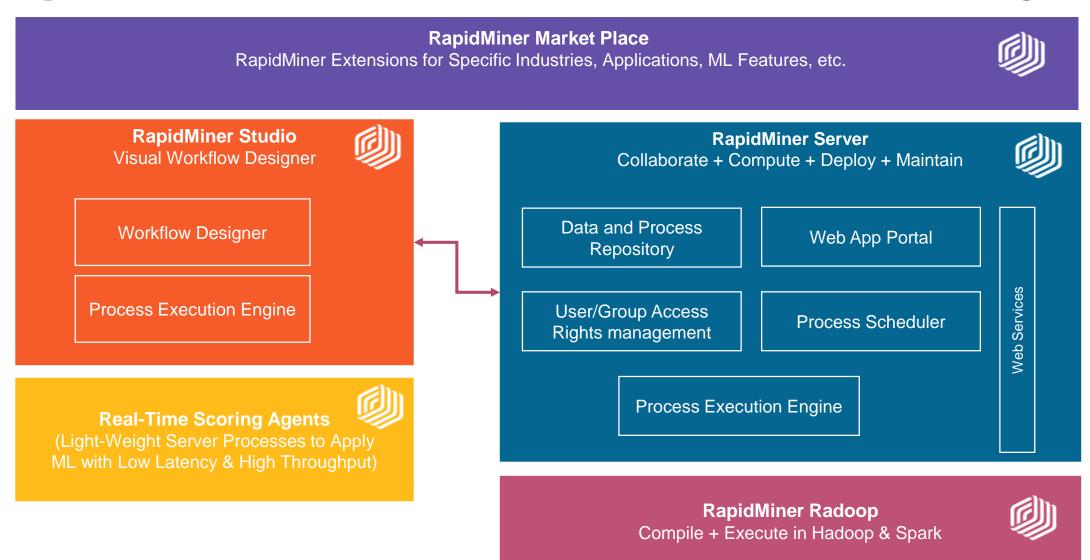








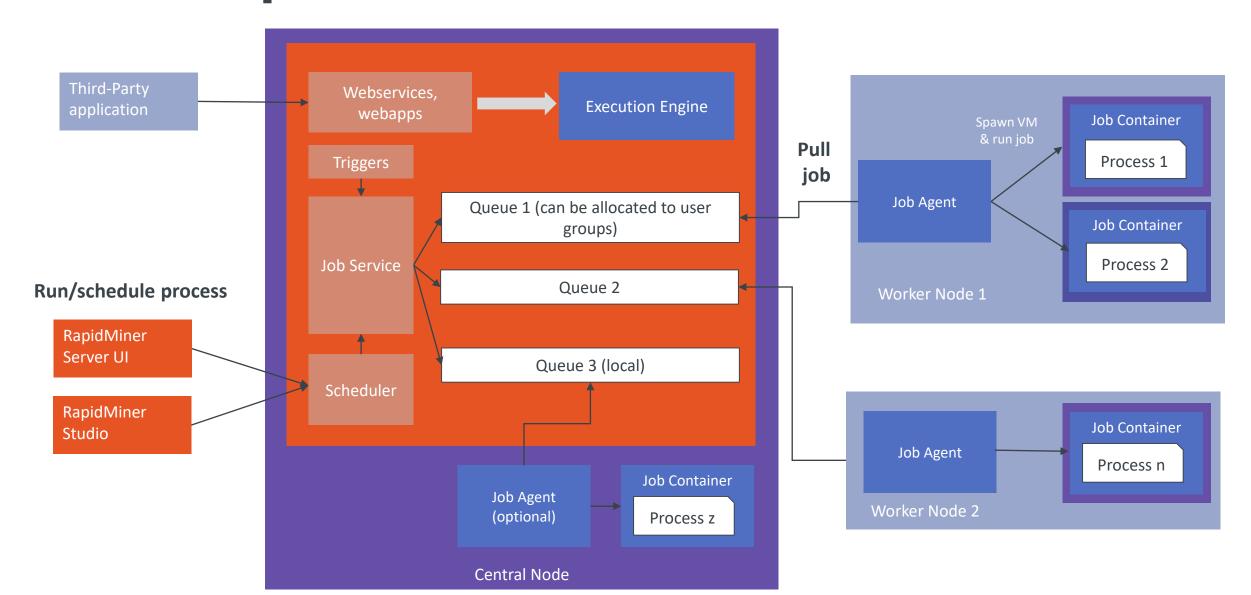
# RapidMiner Platform: Distributed Al-ready







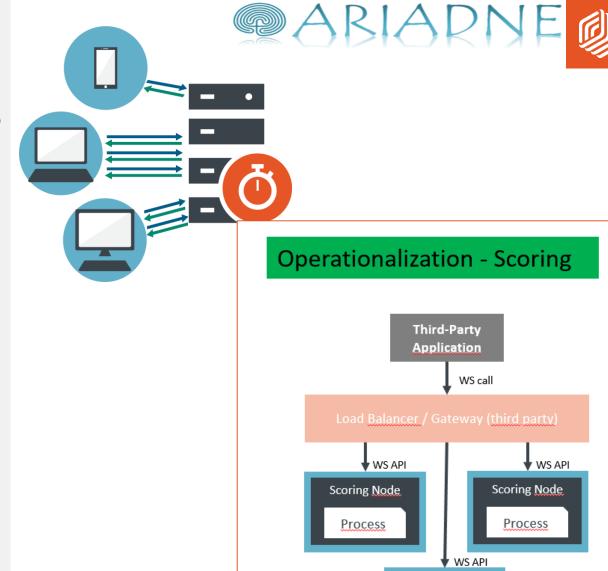
#### RapidMiner Server 9.X Architecture





#### **Real-Time Scoring Agents**

- 1) Low memory footprint server processes designed for high throughput low latency (fast scoring) scenarios.
- 2) Enable real-time online scoring from web portals, phone apps, or desktop applications.
- 3) Manage deployment of scoring processes as webservices with JSON input/output format
- 4) Horizontally scalable as docker containers



Scoring Node





## Learning Resources about RapidMiner

RapidMiner Academy: <a href="https://academy.rapidminer.com">https://academy.rapidminer.com</a>

Online Documentation: <a href="https://docs.rapidminer.com">https://docs.rapidminer.com</a>

Online Community: <a href="https://community.rapidminer.com">https://community.rapidminer.com</a>





#### **More Applications and Use Cases**



#### **Demand Forecasting**

Price Optimization

Supply Chain Optimization

Retail

**Staff Optimization** 

IT Forecast Traffic (Cloud Services)

Replenishment Prediction

Predictive Packaging Energy

#### Manufacturing

Root Cause IT

**Predictive Maintenance** 

**Recipe Optimization** 

**Yield Optimization** 

Early Rejects Process Parameter Forecast

Quality assurance





Dr. Edwin Yaqub
Senior Data Scientist
eyaqub@rapidminer.com





#1 Agile Predictive Analytics Platform for Today's Modern Analysts

**Ralf Klinkenberg** 

Founder & Head of Data Science Research <a href="mailto:rklinkenberg@rapidminer.com">rklinkenberg@rapidminer.com</a>



@RalfKlinkenberg

© 2020 RapidMiner. All rights reserved.