AI/ML as an Enabler for Autonomous Network Management

5G-CLARITY Vision and Use Cases

Erik Aumayr, LMI

5GPPP, TB meeting, 27/05/2020
5G-CLARITY Project Overview

- 5G-CLARITY: Beyond 5G multi-tenant private networks integrating Cellular, WiFi, and LiFi, Powered by Artificial Intelligence and Intent Based Policy
 - Public-private network integration
 - Multiple WAT
 - AI/ML for autonomous network management
 - Intent-based policies

- Partners
 - Coordinators
 - Operators
 - Vendors
 - 5G SMEs
 - Verticals
 - Universities
5G-CLARITY Use Cases

- Museum Pilot (Uni Bristol)
 - Enabling enhanced human-robot interaction
5G-CLARITY Use Cases

- **Museum Pilot (Uni Bristol)**
 - Enabling enhanced human-robot interaction

- **Industry 4.0 Pilot (Bosch)**
 - Wireless multi-service support in Industry 4.0
 - Alternative network to exchange production data
 - Enhanced positioning for AGVs used to move Bosch containers
Complexity of Network Management in 5G

- Different 5G use cases exist in the same network
 - Different requirements and configurations for each use case
- Need for fast changing network
 - Flexibly reacting to demand
 - Scalability
- Need for ease-of-use
 - Reducing OPEX
- AI-supported network management needed to tackle 5G requirements

5G Usage scenarios

- Enhanced Mobile Broadband (eMBB)
- Massive Machine Type Communications (mMTC)
- Ultra-reliable and Low Latency Communications (uRLLC)
Role of AI/ML and Intent in 5G-CLARITY

- AI-supported network management
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning

Diagram:
- AI engine
 - NF1
 - NF2
 - NFn
Role of AI/ML and Intent in 5G-CLARITY

- **AI-supported network management**
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning

- **Intent-based policies**
 - Operator tells the AI what they want, AI takes care of the rest
 - Using intent engine to determine who/what can fulfil the request
Role of AI/ML and Intent in 5G-CLARITY

- **AI-supported network management**
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning

- **Intent-based policies**
 - Operator tells the AI what they want, AI takes care of the rest
 - Using intent engine to determine who/what can fulfil the request

Intent interface

- AI engine provides algorithm x

I want to set up a slice, prioritising private network users over public ones

Required: slice manager and scheduling algorithm x

NF1

NF2

NFn

Slice manager provides slice setup
5G-CLARITY AI Engine with Intent Interface

Service 1: Flow scheduling
Service 2: Resource provisioning
Service n: AI/ML use case n

5G-CLARITY AI Engine

Cloud Data Store and Processing

5G-CLARITY Dashboard

ML Lifecycle Manager
ML Service Registry

5G-CLARITY Network Components (e.g. Slice Manager, RT RIC)

5G-CLARITY Telemetry and Event Collector

ML SDK
ML Training Data Store

5G-CLARITY AI/ML Vision
5G-CLARITY Telemetry Framework

Management & Orchestration stratum
- NFVO
- Slice Manager
- Multi WAT non-rt Controller
- Telemetry Agent(s)
- Telemetry Message Queue / Bus

Telemetry Agent(s)
- Compute Nodes
- Ethernet switching
- Wireless PNFs

Telemetry Consumer
- Value added functions (cloud)
 - Intent Engine
 - AI Engine

Data Lake
- Ingress Filter
- Telemetry PCF
- Metadata Registry

Data Storage
- Telemetry Consumer
- Wireless VNFs

5G-CLARITY AI/ML Vision
Use Case 1: Non RT Slice Resource Control

- **Problem:**
 - Maintain per-tenant SLA defined as % resources over geographic area

- **Inputs:**
 - PRBs used for data traffic per cell and per tenant
 - Throughput per cell and per tenant
 - Offered load per cell and per slice
 - SLA terms

- **Outputs:**
 - Capacity share per tenant and per cell measured as the % of resources in the cell
 - PRBs (5GNR), air time (WiFi), λ (LiFi)

- **Periodicity:**
 - Minutes (Non RT)
 - Location: AI engine

![Diagram](attachment:image.png)
Use Case 1: Non RT Slice Resource Control

I want a network slice with SLA (aggregate capacity across all cells, maximum bit rate per cell)

SLA
I want to get telemetry for (PRBs used for data traffic per cell/tenant, throughput per cell/tenant, Offered load per cell/tenant)

Request telemetry data
Receive data pointer
Forward data pointer
I want network configuration (%PRBs per cell/tenant)

SM request (%PRBs per cell/tenant)
Use Case 2: RT AT3S Control Plane

Problem:
- Optimize resource utilization for multi-connectivity UEs, s.t. per-UE policies (e.g. reliability, max. throughput, etc)

Inputs
- UE connected cell/AP/SSID – user mobility pattern
- UE DL packet drop rate – handover failure
- RSSI – link performance/blockage
- Available Cell resources
- End-to-end aggregation metrics (measured at AT3S UP function)

Outputs
- Scheduling weights in Multi-connectivity framework in UE and UPF

Periodicity:
- 100 – 500 ms
- Location: O-RAN RIC in RAN Edge
Use Case 2: RT AT3S Control Plane

AI Engine

I want to maintain link reliability, decrease packet drop rate

Intent Engine

ML Model

Telemetry

ATSSS

ML policy (model aided deep learning)

I want to get telemetry for:
(i) RSSI - link performance
(ii) DL packet drop rate - failure
(iii) UE connected cell/AP - user mobility pattern
(iv) etc.

Request telemetry data

Receive data pointer

Forward data pointer

I want network configuration: Duplicate traffic and/or associate UE to another LiFi AP (handover)

Configuration request
Reference 5G-CLARITY documents

- D2.2: “Primary system architecture”
 - General Architecture. Introducing role of AI-Engine
 - Due date: October 31st, 2020

- D4.1: “Initial design of the SDN/NFV platform and identification of target 5G-CLARITY ML algorithms”
 - Initial AI Engine design. AI use case definitions
 - Due date: October 31st, 2020

- D4.2: “Validation of 5G-CLARITY SDN/NFV platform, interface design with 5G service platform, and initial definition of evaluation of ML algorithms”
 - Design and initial evaluation for AI engine and ML use cases
 - Due date: June 30th, 2021
Summary

- **AI/ML to support autonomous network management in 5G**
 - Traditional network management can’t handle complexity

- **AI/ML use cases in 5G-CLARITY**
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning

- **AI engine as host for AI/ML algorithms**
 - Covering each AI/ML use case

- **Intent engine for communication to and from the AI engine**
 - Enabling ease-of-use for network management