

AI/ML as an Enabler for Autonomous Network Management

5G-CLARITY Vision and Use Cases

Erik Aumayr, LMI 5GPPP, TB meeting, 27/05/2020

5G-CLARITY Project Overview

- ☐ 5G-CLARITY: Beyond 5G multi-tenant private networks integrating Cellular, WiFi, and LiFi, Powered by Artificial Intelligence and Intent Based PolicY
 - Public-private network integration
 - Multiple WAT
 - AI/ML for autonomous network management
 - Intent-based policies
- Partners
 - Coordinators

■ 5G SMEs

Operators

Vendors

1 interdigital

Verticals

5/27/2020

5G-CLARITY Use Cases

- ☐ Museum Pilot (Uni Bristol)
 - Enabling enhanced human-robot interaction

5G-CLARITY Use Cases

- ☐ Museum Pilot (Uni Bristol)
 - Enabling enhanced human-robot interaction

- ☐ Industry 4.0 Pilot (Bosch)
 - Wireless multi-service support in Industry 4.0
 - Alternative network to exchange production data
 - Enhanced positioning for AGVs used to move Bosch containers

Complexity of Network Management in 5G

- ☐ Different 5G use cases exist in the same network
 - Different requirements and configurations for each use case
- ☐ Need for fast changing network
 - Flexibly reacting to demand
 - Scalability
- Need for ease-of-use
 - Reducing OPEX
- ☐ Al-supported network management needed to tackle 5G requirements

5G Usage scenarios

Enhanced Mobile Broadband (eMBB)

Massive Machine Type Communications (mMTC) Ultra-reliable and Low Latency Communications (uRLLC)

Role of AI/ML and Intent in 5G-CLARITY

- ☐ AI-supported network management
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning

Role of AI/ML and Intent in 5G-CLARITY

- ☐ Al-supported network management
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning
- ☐ Intent-based policies
 - Operator tells the AI what they want,
 AI takes care of the rest
 - Using intent engine to determine who/what can fulfil the request

Role of AI/ML and Intent in 5G-CLARITY

- ☐ AI-supported network management
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning
- ☐ Intent-based policies
 - Operator tells the AI what they want,
 AI takes care of the rest
 - Using intent engine to determine who/what can fulfil the request

5G-CLARITY AI Engine with Intent Interface

5G-CLARITY Telemetry Framework

Use Case 1: Non RT Slice Resource Control

☐ Problem:

- Maintain per-tenant SLA defined as % resources over geographic area
- ☐ Inputs
 - PRBs used for data traffic per cell and per tenant
 - Throughput per cell and per tenant
 - Offered load per cell and per slice
 - SLA terms
- Outputs
 - Capacity share per tenant and per cell measured as the % of resources in the cell
 - PRBs (5GNR), air time (WiFi), λ (LiFi)
- Periodicity:
 - Minutes (Non RT)
 - Location: Al engine

Use Case 1: Non RT Slice Resource Control

Use Case 2: RT AT3S Control Plane

☐ Problem:

 Optimize resource utilization for multi-connectivity UEs, s.t. per-UE policies (e.g. reliability, max. throughput, etc)

Inputs

- UE connected cell/AP/SSID user mobility pattern
- UE DL packet drop rate handover failure
- RSSI link performance/blockage
- Available Cell resources
- End-to-end aggregation metrics (measured at AT3S UP function)

Outputs

 Scheduling weights in Multi-connectivity framework in UF and UPF

☐ Periodicity:

- 100 500 ms
- Location: O-RAN RIC in RAN Edge

Use Case 2: RT AT3S Control Plane

14

Reference 5G-CLARITY documents

- □ D2.2: "Primary system architecture"
 - General Architecture. Introducing role of AI-Engine
 - Due date: October 31st, 2020
- □ D4.1: "Initial design of the SDN/NFV platform and identification of target 5G-CLARITY ML algorithms"
 - Initial AI Engine design. AI use case definitions
 - Due date: October 31st, 2020
- □ D4.2: "Validation of 5G-CLARITY SDN/NFV platform, interface design with 5G service platform, and initial definition of evaluation of ML algorithms"
 - Design and initial evaluation for AI engine and ML use cases
 - **Due date**: June 30th, 2021

Summary

- □ AI/ML to support autonomous network management in 5G
 - Traditional network management can't handle complexity
- ☐ AI/ML use cases in 5G-CLARITY
 - Slice setup and provisioning
 - Resource scheduling
 - SLA violations
 - ATSSS
 - Positioning
- ☐ AI engine as host for AI/ML algorithms
 - Covering each AI/ML use case
- ☐ Intent engine for communication to and from the AI engine
 - Enabling ease-of-use for network management