

5GCroCo Overview

Dirk Hetzer (Deutsche Telekom) Technical Manager 5GCroCo

 \mathbf{T} ...

supported by Maciej Muehleisen (Ericsson)

CLEEN2020 - 7 - 11 June 2020

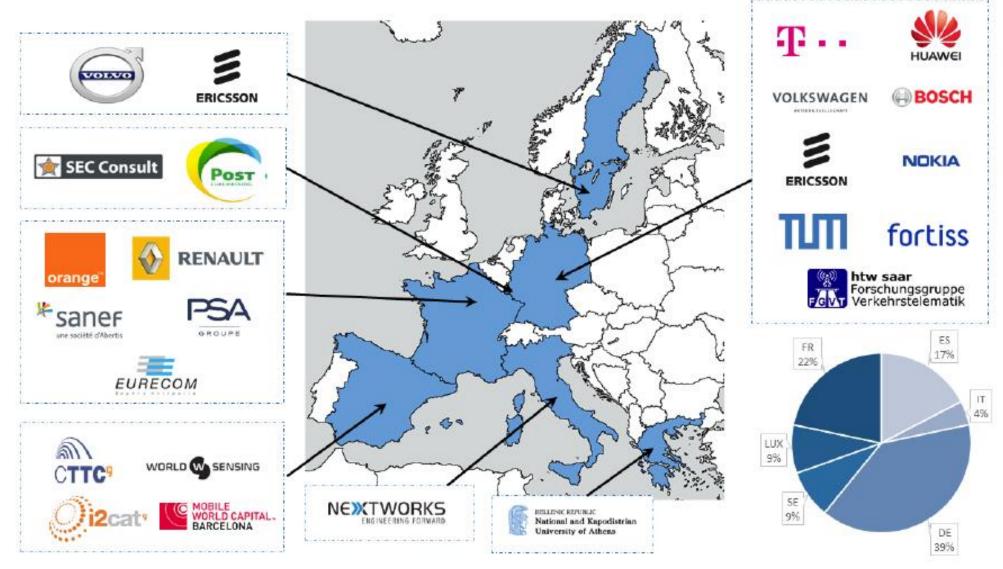
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825050-5GCroCo

5G Cross Border Control

Innovation Action H2020-ICT-18-2018 Contract 825050

Cooperative, Connected and Autonomous Mobility (CCAM)
a 5G-PPP Phase III Project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825050-5GCroCo



Outline

- General Overview
- Use Cases Description
- Trials & Pilots
- Solutions Design
- Summary

5gCroCo Project Partner

Goals and partners per domain

- Goal: harmonized solutions for CCAM along Europe supporting cross-border traffic
- Challenge: the multi-country, multi-operator, multi-telco-vendor, and multi-car-manufacturer scenario of any cross-border layout

Automotive:

HD Mapping

— Volvo Cars:

Tele-Operated Driving:

- Volkswagen
- Bosch

Anticipated Coop. Collision Avoidance (ACCA).

- Renault
- PSA

Telco:

Vendors:

- Ericsson
- Huawei
- Nokia

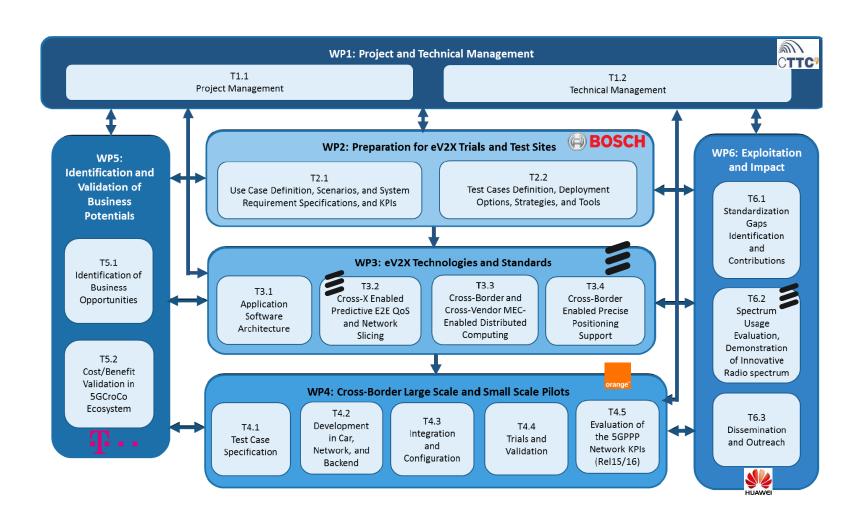
Operators:

- Dt. Telekom
- Orange
- POST Luxembourg

Research/SME:

- CTTC (ES)
- Barcelona Mobile World
 Capital (ES)
- I2CAT (ES)
- Nextworks (ES)
- Worldsensing (ES)
- Fortiss (DE)
- TU Munich (DE)
- htw saar (DE)
- Eurecom (FR)
- NKUA (GR)
- SEC Consult (LUX)

Public sector:

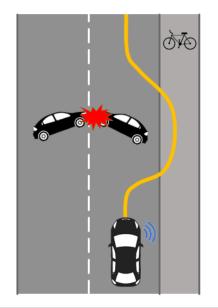

- SANEF (FR)
- htw saar (DE)
- POST Luxembourg

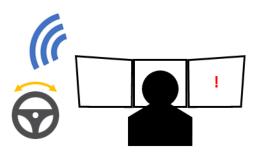
Focus of the innovation

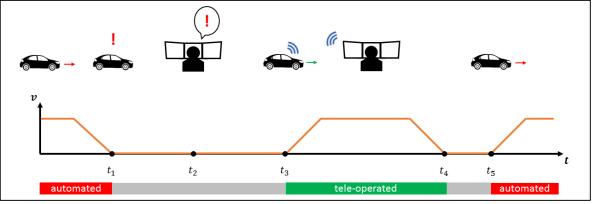
- 5G Technology features
 - Cross-border/MNO/vendor/generation Operation
 - Distributed Computing enabled by Mobile Edge Computing (MEC)
 - New Radio
 - Network Slicing
 - Predictive QoS
 - Improved Positioning
- Recommendations for Regulation and Spectrum
- Identification of new business model opportunities
- Impact on standardization (3GPP, ISO, ETSI, SAE, ...)

WPs and WP-leaders

Technologies and expected progress

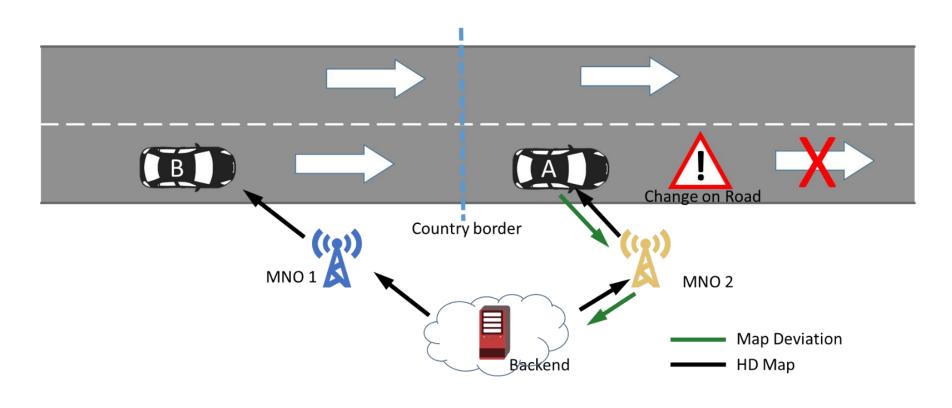

- Definition "Technology Readiness Level (TRL) 4": shown in lab / test site (including closed test-tracks) but not on public road
- Underlying baseline technology might be more mature but not in in cross-X context
- 3GPP long-range cellular communication technology (LTE & NR)


Technical element	Project start	Project end
Cross-Border/-MNO 5G Network Service Continuity	TRL 4	TRL 6
Cross-Border/-MNO/-Vendor/-OEM Mobile Edge Computing	TRL 3	TRL 5
Predictive QoS	TRL 4	TRL 6
Cross-Border/-MNO Mobile Radio Network Supported Precise Localization	TRL 4	TRL 5
E2E QoS with Network Slicing	TRL 4	TRL 6
Cellular-V2X Security Architecture	TRL 5	TRL 6
Trial Execution and Result Quality Assurance Methods for Safety Critical	TRL 4	TRL 6
Services		

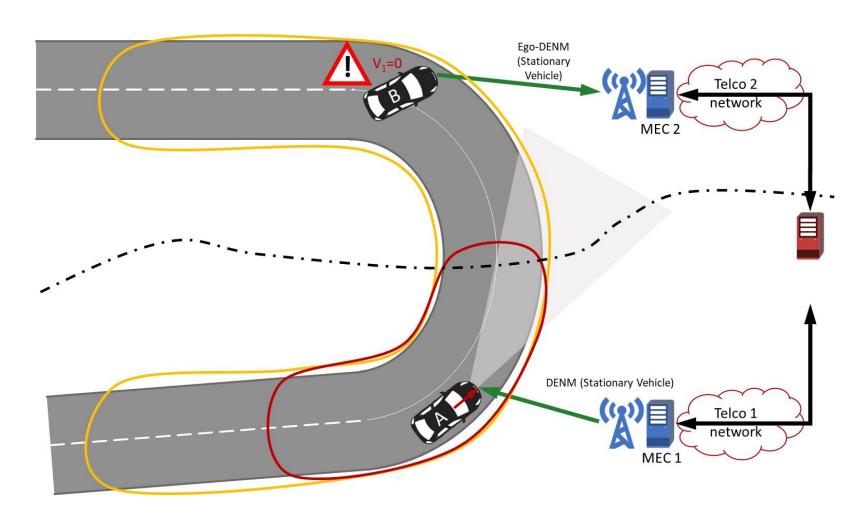

Use Case 1(3) Tele-operated driving

Different situations:

- Remotely initiated lane change or speed adaptation on highway (L3 - L4)
- Transfer from urban to highway (L4)
- Not responding driver (L4)
- Undefined traffic situations (L4 – L5)



Use Case 2(3) High Definition Maps for Enabling Autonomous Driving


Permanently updated (crowd sourcing) and e.g. used for:

- Optimal route selection
- Updating route in hazardous situations

Use Case 3(3) Anticipated Cooperative Collision Avoidance (ACCA)

- Anticipate dangerous events
- Facilitate smoother and more homogeneous vehicle reaction

Main 5G Needs of Use Cases

5G Feature	ToD	HD mapping	ACCA
High data rate	Χ	X	
Functional safety	X		
High reliability	X		X
Low latency	Χ		X
Seamless availability		X	
QoS prediction	Χ	X	
Mobile Edge Computing			X

5GCroCo Innovation Action 12

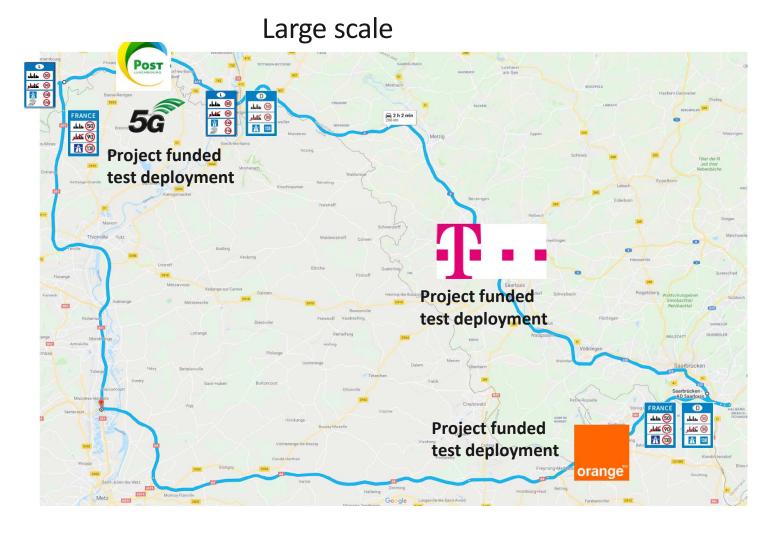
Requirements (extract)

UC name	Network	Data Rates Uplink	Data Rates	Reliability Uplink	Reliability
	Latency		Downlink		Downlink
ToD	< 40 ms	50 Mb/s	500 Kb/s	> 99%	> 99,9%
HD Mapping	1000 ms	[Hundreds of kB to hundreds of MB]/s,		> 99.9%	> 99.9%
	maximum "age"	depending on the tile s	size, number of		
	of information	roads in tile and tile co	ntent.		
ACCA	< 1000 ms	4 Kb/s (for 1 hazard)	4 Kb/s/vehicle	> 99%	> 99%

5GCroCo Innovation Action 13

5GCroCo – Pilots & Testing

5G CroCo will implement, roll-out and showcase 3 Use Cases.


- First on small scale Pilot sites in Barcelona, UTAC-Monthléry, Munich, A9 Germany, AstaZero
- And finally on a Large Scale Cross-Border Corridor between Germany, France and Luxemburg

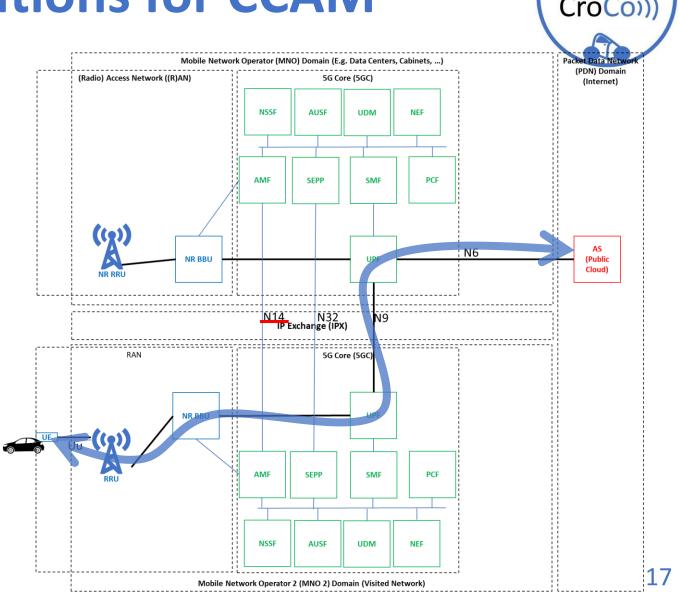
Test sites

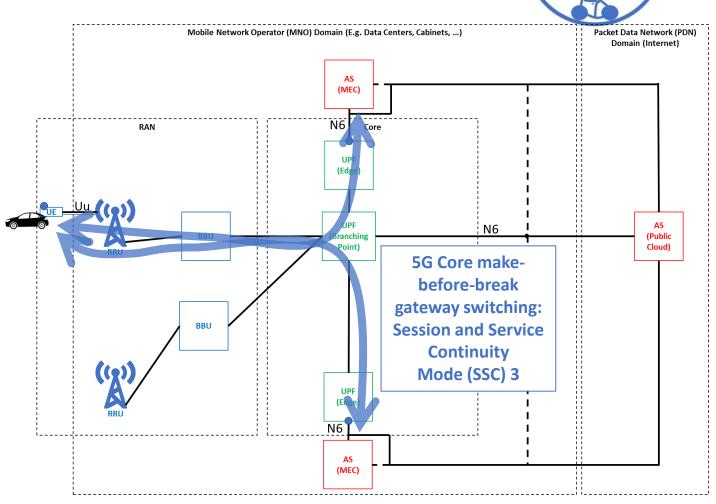
Small scale:

- Barcelona (Spain): cross-border city
- Montlhéry (France): test track
- AstaZero (Sweden): test track
- Munich (Germany): dense urban area; transition from city to motorway; sophisticated 4G & 5G test network
- A9 (Germany): motorway;
 resembling major part of large
 scale cross-border test site

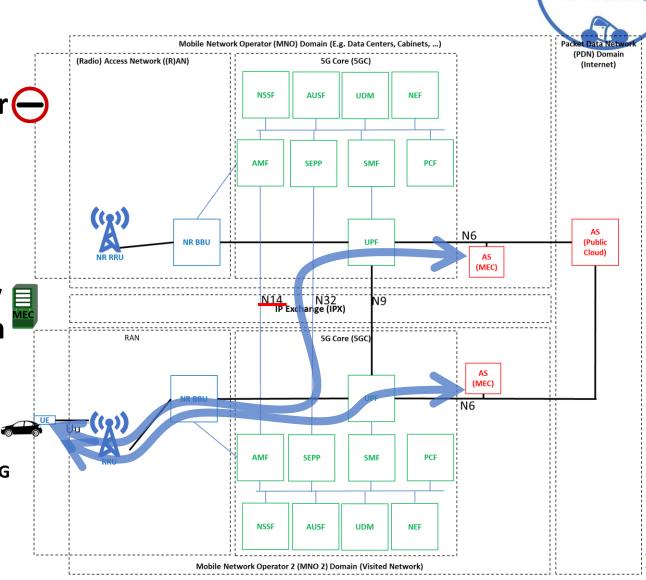
- 5G New Radio
- Cross-border/-MNO handover
- Quality of Service (QoS)
 - End-to-end with Dedicated Bearers*)
 - QoS prediction

- Mobile Edge Computing/Cloud (MEC)
 - Alternative/complement to public Internet hosting
 - 3GPP network service/session continuity
 - Inter-MEC communication across borders / MNOs¹⁾
- Management and Orchestration & SDN^{2)*)}
 - Single country /-MNO
 - Cross-border/-MNO


Precise positioning


5G CroCo»)

- 5G New Radio
- Cross-border/-MNO handover
- Quality of Service (QoS)
 - End-to-end with Dedicated Bearers
 - QoS prediction
- Mobile Edge Computing/Cloud (MEC)
 - Alternative/complement to public Internet hosting
 - 3GPP network service/session continuity
 - Inter-MEC communication across borders / MNOs1)
- Management and Orchestration & SDN
 - Single country /-MNO
 - Cross-border/-MNO
- Precise positioning
- → Also possible with 4G Evolved Packet Core (nonstandalone 5G New Radio)


5G CroCon))

- 5G New Radio
- Cross-border/-MNO handover
- Quality of Service (QoS)
 - End-to-end with Dedicated Bearers
 - QoS prediction
- Mobile Edge Computing/Cloud (MEC)
 - Alternative/complement to public Internet hosting
 - 3GPP network service/session continuity
 - Inter-MEC communication across borders / MNOs1)
- Management and Orchestration & SDN
 - Single country /-MNO
 - Cross-border/-MNO
- Precise positioning
- → Also possible with 4G Evolved Packet Core (nonstandalone 5G New Radio) but with "break-beforemake" gateway switching 8service interruption)

5G CroCo»)

- 5G New Radio
- Cross-border/-MNO handover
- Quality of Service (QoS)
 - End-to-end with Dedicated Bearers
 - QoS prediction
- Mobile Edge Computing/Cloud (MEC)
 - Alternative/complement to public Internet hosting
 - 3GPP network service/session continuity
 - Inter-MEC communication across borders / MNOs1)
- Management and Orchestration & SDN
 - Single country /-MNO
 - Cross-border/-MNO
- Precise positioning
- → Cross-border/-MNO handover also possible with 4G Evolved Packet Core (non-standalone 5G New Radio) but change of gateway results in service interruption

5GCroCo Innovation Action

Summary

- Selected use cases will need big variance in requirements for 5G networks (bandwidth up/down, E-2-E latency)
- 5G can support MEC with local breakout routing without service interruption in cross-border scenarios ("make-before-break")
- Trials in 2020/2021 will show how automotive application can be used seamless during change of operator / country

THANKS!!

Dr. Dirk Hetzer

5GCroCo Technical Coordinator
DTAG

Dirk.Hetzer@t-systems.com

To know more:

http://5gcroco.eu

Follow us in twitter: @5GCroCo

Connect in Linkedin

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825050-5GCroCo

