Integrating 5G enabling technologies in a holistic service to physical layer 5G system platform

5GPPP webinar on ICT-42 projects 16/02/2021

Int5Gent ICT-42 project presentation

Dimitris KLONIDIS (UBITECH)

Project Overview

Int<mark>5</mark>Gent

General Information

> Contract No: 957403

Topic: 5G core technologies innovation

Type: IA

Duration: 36 Months

> Start date: 1st of November 2020

> Two reporting periods

> P1: M01-M18 & P2: M19-36

> Requested EC contribution: €5,948,029.88

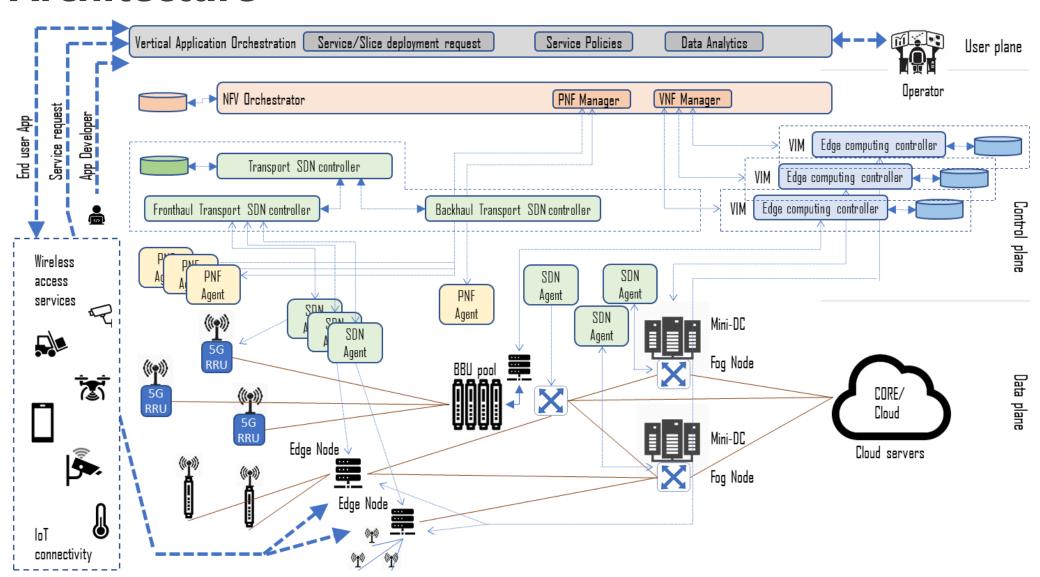
Coordinator: Prof. Hercules Avramopoulos (ICCS)

> Project Officer: Dr. Jorge Pereira

> Website: https://www.int5gent.eu

Technical manager

WORLD W SENSING


Main goal of the project

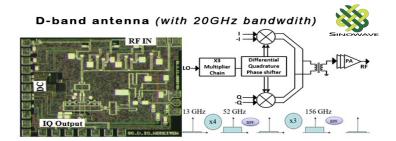
- > To deploy a **holistic 5G system platform** that combines:
 - > Advance technological blocks for the <u>data plane infrastructure</u> (both at radio and backhaul HW level)
 - Complete <u>network orchestration</u> through flexible PNF-VNF instances over a generalized NFV Infrastructure (NFVI), extended to edge computational, storage and networking resources.
 - > An intelligent overlay <u>application orchestrator</u> for the vertical services allow a pragmatic approach for the services' deployment, the extraction of analytics and the inclusion of policy criteria.
- > To **integrate innovative solutions at different development layer of the 5G stack** and combine them optimally in the quest to promote true 5G enabling solutions for new technology and service provisioning vertical markets.
 - > 2 Large test beds extended over real infrastructures (Barcelona, Athens)
 - > 2 Technology demonstration actions
 - 3 End-user (verticals) driven use case scenarios

Architecture

A fully operational **5G system platform** from the user end to the data plane

- To demonstrate interoperability among technology providers, service providers, application developers and operators,
- To form the first coordinated effort for a holistic interoperable multi-RAT cross-split environment.

Int5Gent – Technology integration approach



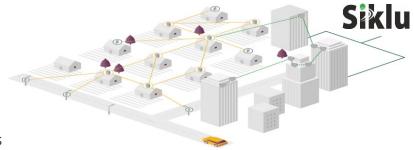
- Work is split in 3 synergetic different <u>focus areas</u> creating an equivalent number of <u>working</u> <u>groups</u>, performing under a common idea and architecture.
- Focus Areas:
 - Focus Area 1: Fronthaul Technologies
 - → WG1: ICCS, IMEC, SIKLU, SNW, AUTH, COSM, FGC, WSE
 - > Focus Area 2: Orchestration
 - → WG2: UBITECH, NXW, CTTC, TID, INTRA, COSM, ININ, WSE
 - > Focus Area 3: Edge node technologies
 - → WG3: MLNX, ICCS, UBITECH, INTRA, CTTC, AUTH, TID, FGC
- > Horizontal actions (phases):
 - > Action to run in consecutive order with small overlaps between them
 - > 1st Architecture definition and functional requirements (by M12)
 - > 2nd Development and continuous integration rounds (by M30)
 - 3rd Demonstration and evaluation (by M36)

FA1: Fronthaul Technologies

- Multi-connectivity interfacing options:
 - > D-RoF
 - Standardized solution of eCPRI over fibre
 - A-IFoF
 - Analogue IF over fibre
 - Solutions for high bandwidth efficiency
 - Proven tech through 5G-complet 5G-phos
 - > Σ-Δ modulation
 - Innovative format merging the bandwidth efficiency of ARoF and transmission efficiency of D-RoF

- Fronthaul SDN Controller

 Backhaul SDN Controller

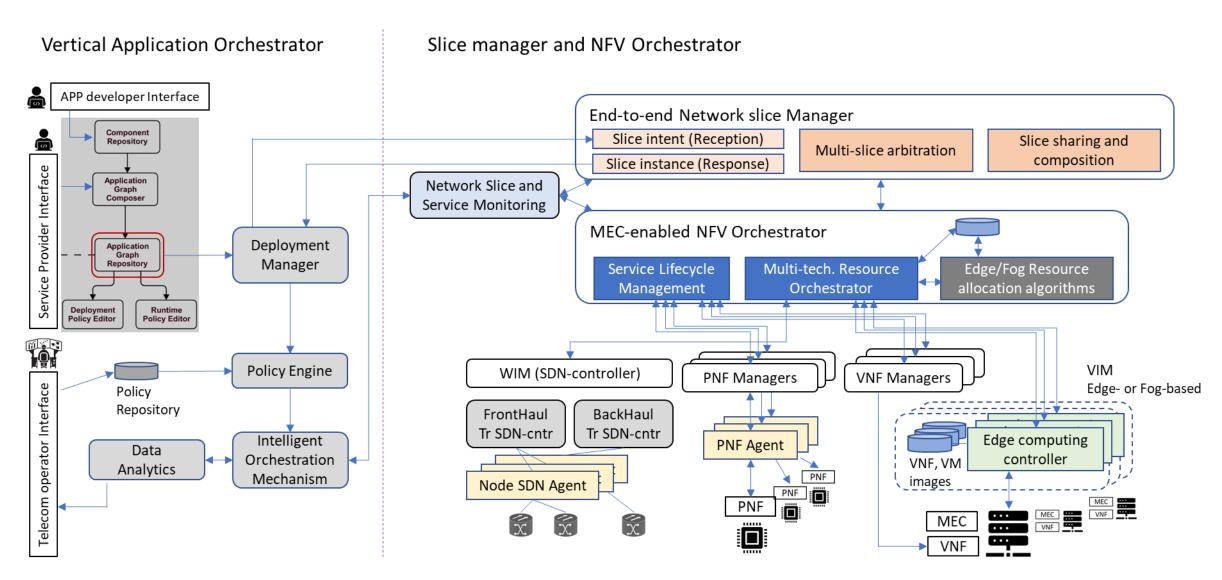

 VEPC

 Δ-IFOF

 Σ-Δ Modulator

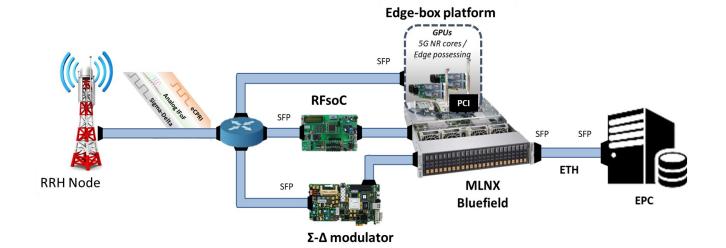
 11 12 12 13
- D-Band radio fronthaul interface:
 - > **D-band radio** with co-integrated radio frontends, transceiver RF ICs and opto-electronic units
 - > Operation in ~150GHz freq. band Wide bandwidth of 20GHz
 - Compatible with Digital/Analog/Sigma-Delta data plane interfaces

- mm-Wave mesh nodes:
 - > V-band mesh radio nodes.
 - Support of independent sectors
 - > MEC-assisted processing of data generated by edge devices


FA2: Orchestration

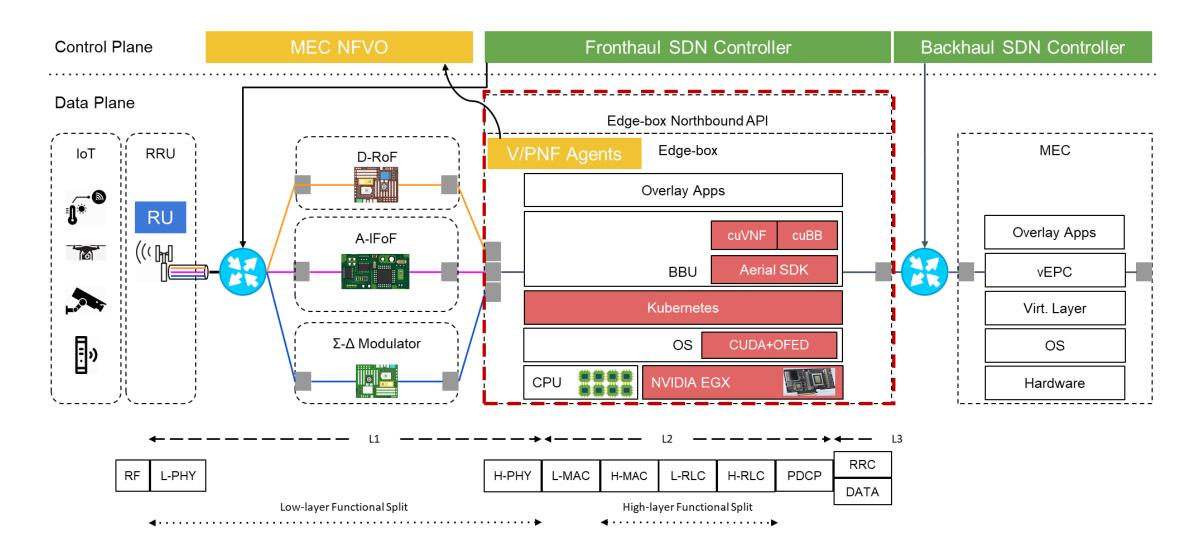
- > Vertical Application Orchestrator: Service lifecycle management and service function requests.
 - > Services components and End-user connectivity demands through **UIs**
 - > Composition of application graph for requested service
 - > **Policy engine** for monitoring the lifecycle of the service according to the pre-set properties
 - > Intelligent policy related actions and network state information through data analytics engine.
- > Network Slice Manager: The logic to for composing network slices
 - > Optimizing the sharing and the dynamic scaling of their components
 - > Interaction with the NFVO for dynamically provisioned slices according to the runtime requirements of the service applications.
- > Control plane: Management of resource allocation
 - Distributed in multiple administrative domains and controlled through technology-specific VIMs.
 - > VIMs to be specialized according to the virtualization capabilities offered in each domain
 - > Service Function instantiation through the provisioning of **custom network paths**
 - > For advance edge node interconnectivity
 - > To be automatically tailored to the dynamicity of the service deployment.
 - > Monitoring data (about network performance) as input for cognitive networking strategies,
 - > Network paths establishment for the inter-/intra-site traffic flows, in compliance with the virtual networking approach adopted at the different VIMs and at the edge of the related PoPs.

FA2: Orchestration architecture



FA3: Edge node

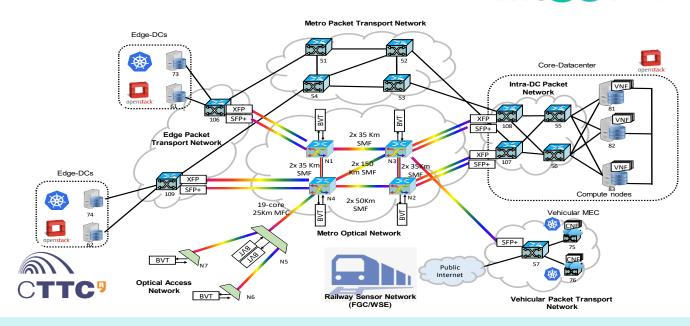
- > The role of Edge Box
 - > Implements the fronthaul connectivity layer
 - > Interconnecting the cloud infrastructure with edge compute resources
- Xey Tech characteristics
 - Connectivity:
 - \rightarrow FPGA for $\Sigma\Delta$ and analog interfaces
 - 5G NR digital interfaces provided by NVIDIA's HW
 - Edge processing:
 - NVIDIA's Bluefield equipped with GPU slots for hardware acceleration



> Overall capabilities

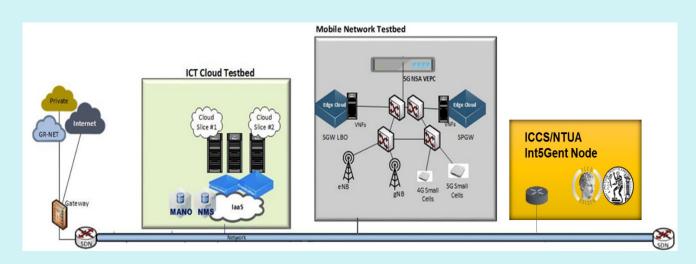
- Multi-format signal support for expandability and O-RAN support
- > Single solution for RAN interfacing and edge processing capabilities
- > Seamless SDN/NFV compatibility through orchestration platform

FA3: Edge node architecture



Test-beds

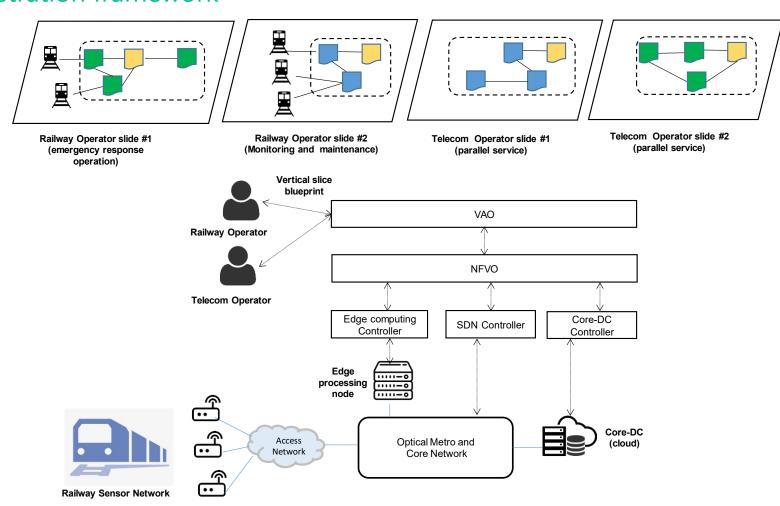
Int<mark>5</mark>Gent


CTTC testbed

- > Hybrid fixed/flexi-grid DWDM core network
- Whitebox ROADM/OXC nodes.
- Packet transport network, at the edge and metro segments,
- Core cloud infrastructure (core-DC with HPC servers)
- Edge cloud infrastructure (micro-DCs in the edge nodes).
- Connectivity to the FGC/WSE infrastructure and sensors for railway infrastructure monitoring.

COSMOTE-NTUA testbed

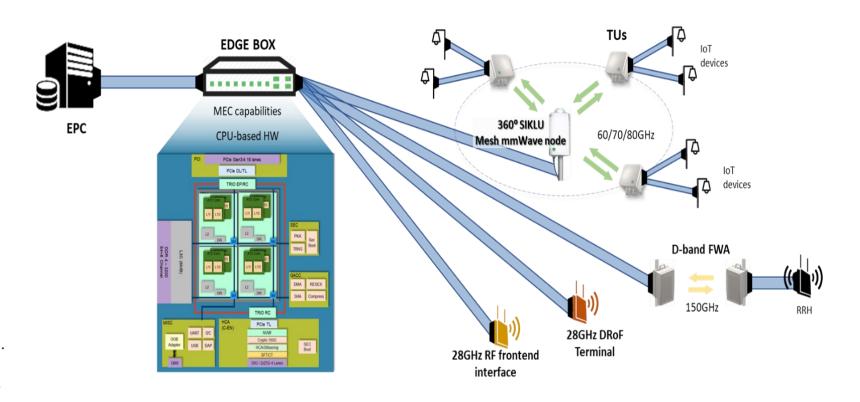
- COSMOTE Capabilities:
 - > 10G transport/switching network
 - > Openstack-based multi-cloud large scale infrastructure
 - MANO installation (ETSI OSM based).
 - a wide range of IoTs, IoT hubs/gateway, Backend connectivity over a wide range of short/long range technologies
- ICCS-NTUA Capabilities:
 - > 5G-NR compatible HW/SW blocks
 - Established Fiber/Wireless segments
 - Deployment/hosting of Edge node and mmWave mesh network solutions



Use cases

UC1: 5G service and network orchestration framework

- Testbed: CTTC+ FGC
- Main contributors: CTTC, NXW, UBITECH, WSE, FGC, TID, INTRA, (MLNX)
- > Key Features:
 - > VAO-NFVO-transport SDN integration
 - Multi-service/slice management in multi-vendor environment
 - Edge node processing capabilities (for certain applications)
 - > (Typical RAN infrastructure)

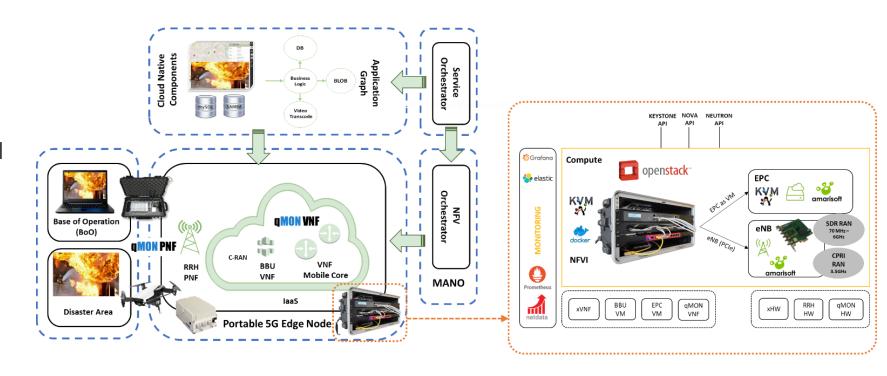


Use cases

UC2: 5G Radio Access Network Technologies and edge processing

- > Testbed: ICCS
- Main contributors: IMEC, SINK, SNW, COSM, MLNX, UBITECH, INTRA, NXW
- Xey Features:
 - Technology demonstration of:
 - mmWave V-band self-organised node
 - D-band 5G terminal
 - SD transmission and RRH
 - Flexible edge-box TRx
 - High capacity optical and wireless fronthaul
 - Edge node baseband processing capabilities
 - Edge node service data processing capabilities
 - Supported by smart applications (e.g. face recognition, energy data analytics, CAM related video analytics) adapted to edge processor platform
 - requires control plane framework deployment

Remarks:


- Expected to run mainly in ICCS/NTUA premises, with COSM providing the EPC.
- UBITECH can also contribute with EPC simulation and sub 6GHz RAN if required

Use cases

UC3: Portable 5G system in support of a complex drone-based service

- Testbed: COSMOTE/ICCS
- Main contributors: ININ, UBITECH, NXW
- > Key Features:
 - VAO-NFVO-transport SDN integration
 - Chainable application components
 - VNF and PNF networking capabilities
 - 5G Slice manager and Al based video and data analytics
 - Edge processing capabilities

Remarks:

 Ultimate goal is to be performed at Cosmote site together with UC2 running at ICCS so essentially having 2 RANs

Key expected benefits

- The build and demonstration of a complete E2E 5G-platform testbed
 - > Interworking of data plane control plane service plane
- An integrated environment for the testing of enabling HW components under real 5G applications
- A unique edge node comprising:
 - Multi-technology interfacing capabilities
 - > Build-in GPU processing capabilities
- An intelligent service management + network resource orchestration + connectivity control framework

Integrating 5G enabling technologies in a holistic service to physical layer 5G system platform

Thank you

Questions?

For more information please contact:

- Dimitris Apostolopoulos: [<u>apostold@mail.ntua.gr</u>]
- Dimitris Klonidis: [<u>dklonidis@ubitech.eu</u>]

