

5G Infrastructure PPP European path towards global next gene

Motivation

- Phase II of the 5G PPP focused on the underlying technology including service creation → architecture white paper V3.0
- Phase III of the 5G PPP focused on test infrastructures and vertical applications → architecture white paper V4.0
 - Integrates trends towards architecture aspects for deploying vertical applications
 - Separates domains
 - Services for vertical customers
 - Network
 - Infrastructure
 - Mapping between domain and stakeholders

5G Infrastructure PPP uropean path towards global next general communication networks

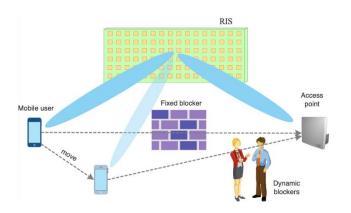
Chapter 3 Outline

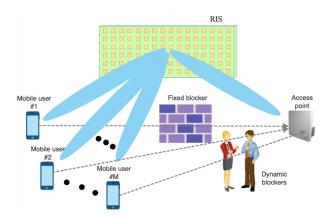
R A N	Multi-Technology Wireless Access Network	56 CLÂRITY
	Enhanced ATSSS	56 CLÂRITY
	THz RIS and AI based Radio Access Optimisation	@ABIARNE
	O-RAN xApps	56 CLÂRITY
	5G RAN Integration with Audio Capture Devices and Production Site	SG REC®RDS
	Intra and Inter Slice Scheduling Algorithm	56 DRONES
E D G E	Edge Cloud Classification	5 6-VINNI
	Autonomous Edge Computing	5G-VINNI
	ML for Edge Resilience	5G-VINNI
	Edge Computing for CAM	5GCroCo
	On-Premise Edge Computing	56 GLÂRITY
	Kubernetes based MEC Platform	© SGZORRO
Localisation	Localisation Enablers	LÔCUS
	Positioning Technologies for Industry 4.0	56 CLÂRITY
ion	Enhanced Vehicle Localisation	5GCroCo

Non-3GPP Access Technologies Aggregation & Enhanced ATSSS

- A practical approach on integrating Wi-Fi and LiFi technologies
- Aggregation within a single SDN enabled layer 2 (L2) network:
 - to provide the ability to control the path followed by packets belonging to different slices within the L2 segment with fine granularity as compared to a standard IEEE 802.1 Ethernet segment,
 - to support seamless mobility.
- The existing mechanism to integrate 3GPP and non-3GPP networks such as N3IWF or trusted network gateway function (TNGF) can be used in combination with 3GPP ATSSS framework to have an integrated 5G/Wi-Fi/LiFi network
- The enhanced ATSSS framework, is proposed a *real-time steering mode*, as the ATSSS rule with the highest priority that adaptively links conditions and network status

RIS and AI based Radio Optimisation

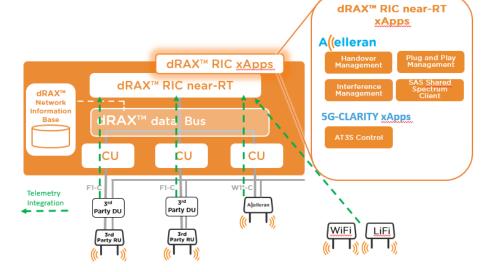



RIS assisted beamforming scenario

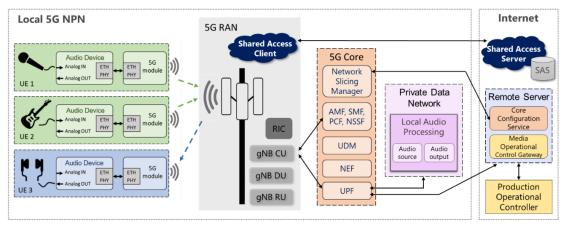
- RIS assisted broadcasting scenario
 - A single AP serves multiple UEs
- ML-based approaches to reduce latency (e.g. in channel estimation) and probability of blockage and to guarantee high reliability

5G Infrastructure PPP European path towards global next ger

O-RAN xApps


The (Accelleran) dRAX™ is enabled with multi-WAT telemetry data from 5GNR, Wi-Fi and LiFi which is exposed via the data-bus to the AT3S controller multi-WAT xApp

Typical default Accelleran xApps relate to usual network functions associated to handling a cluster of 5GNR small cells such as plug and play, interference management, handover

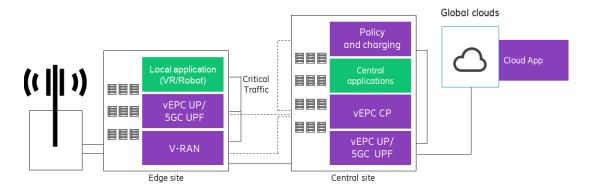

management, etc.

near-RT-RIC and non-RT-RIC xApps enabled by the Accelleran dRAX™ solution

5G RAN Integration with Audio Capture Devices and Production Site

- Open virtualized RAN aligned with the O-RAN Alliance
- An open and extensible software framework for the control plane functions of 4G and 5G RAN and follows the O-RAN architecture
- The O-RAN 5G SA vRAN solution consists of a near-RT RIC, CU-CP, CU-UP and xApp framework components
- 3GPP Control User Plane Separation (CUPS) allows the user and control planes to be fully decoupled

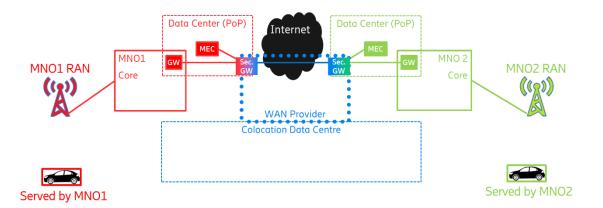
5G Infrastructure PPP


ommunication networks

Autonomous Edge Computing

- Autonomous Edge (AE) is a method of optimizing cloud by performing data processing at the edge of the network, ne
- Reduces the bandwidth needed for connection to the core network
 - Performing analytics and knowledge generation at or near the source of the data
 - providing Core Network capabilities in the edge site

5G Infrastructure PPP European path towards global next gen


Edge Computing for CAM

 Connected and Automated Mobility (CAM) services like Anticipated Cooperative Collision Avoidance (ACCA) require defined end-to-end latency and reliability across MNOs

- The proposed solution is based on purchasing wide area network services with controlled QoS between data centres of MNOs where the gateways are located
- For cross border hand-overs, Service and Session Continuity mode 3 (5G SA feature), also known as "make-before-break" gateway switching, allows to first connect to the new gateway and then releasing the packet data network connection from the old one

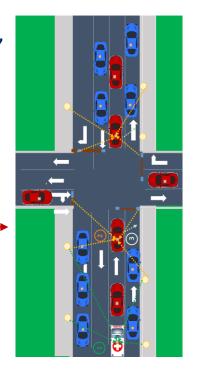
5G Infrastructure PPP e European path towards global next gen

Localisation Enablers

- mMTC: energy and bandwidth efficient alternatives
- URLLC: allocate mini-slots to reduce localisation service response
- eMBB: lightweight mmWave localisation algorithms
- Non-3GPP technology-based localisation
 - Information extracted from non-3GPP systems, e.g. 80.11, serve as input in heterogeneous data fusion
- Device free localisation
 - Capability of detecting and tracking objects that do not communicate within the localisation infrastructure
 - Relies on active or passive schemes
 - Takes advantage of any modulated signal at any frequency

Enhanced Vehicle Localisation

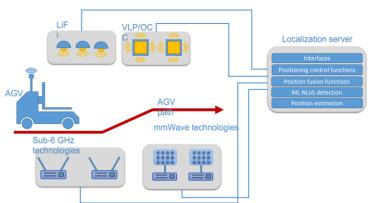
RAT dependent methods



Hybrid of GNSS inertial systems and UWB positioning

Priority access of an ambulance in a crowded road is facilitated using enhanced positioning system

- Hybrid approach
 - LTE positioning protocol (GNSS Real-Time Kinematic)


Positioning Technologies for Industry 4.0

- 'positioning accuracy shall be better than 0.2 m for IIoT use cases'
- Using multiple technologies for accurate positioning of AGVs
 - Sub 6GHz: TDoA, WiFi, Bluetooth, other range-based methods
 - mmWave: custom 60 GHz system, 2 GHz BW, sub-cm accuracy
 - LiFi: RSS based, dense deployment of LiFi nodes
 - Optical Camera Communications:
 UE equipped with VLC camera to
 light source IDs and positions
- ML assisted merging algorithms to enhance the position estimate

