Project Name | Title of the 5G PPP Project Paper | Reference Information |
---|---|---|
5G-CARMEN | LightEdge: Mapping the Evolution of Multi-access Edge Computing in Cellular Networks (Journals & Magazines, IEEE Communications Magazine,Volume: 58 Issue: 4) DOI: 10.1109/MCOM.001.1900690 | https://ieeexplore.ieee.org/document/9071985 open access link https://www.researchgate.net/publication/340801665_LightEdge_Mapping_the_Evolution_of_Multi-Access_Edge_Computing_in_Cellular_Networks |
5G-CARMEN | Enabling Computation Offloading for Autonomous and Assisted Driving in 5G Networks, Published in: 2019 IEEE Global Communications Conference (GLOBECOM) DOI: 10.1109/GLOBECOM38437.2019.9013490 | https://ieeexplore.ieee.org/document/9013490 open access: https://www.researchgate.net/publication/339564518_Enabling_Computation_Offloading_for_Autonomous_and_Assisted_Driving_in_5G_Networks |
5G CLARITY | 5G-CLARITY D2.1 - Use-Case Specifications and Requirements 5G-CLARITY D3.1 - State-of-the-Art Review and Initial Design of the Integrated 5GNR/Wi-Fi/LiFi Network Frameworks on Coexistence, Multi-Connectivity, Resource Management and Positioning 5G-CLARITY D2.2 - Primary System Architecture 5G-CLARITY D4.1 - Initial Design of the SDN/NFV Platform and Identification of Target 5G-CLARITY ML Algorithms 5G-CLARITY D5.1, Specification of Use Cases and Demonstration Plan D. Camps-Mur, et al, "5G-CLARITY: Integrating 5GNR, WiFi and LiFi in Private 5G Networks with Slicing Support," EuCNC 2020. | All Deliverables: https://www.5gclarity.com/index.php/deliverables/ |
5G COMPLETE | “Advanced optical access technologies for next-generation (5G) mobile networks [Invited],” J. Opt. Commun. Netw. 12, D86-D98 (2020) Jim (Shihuan) Zou, Silviu Adrian Sasu, Mirko Lawin, Annika Dochhan, Jörg-Peter Elbers, and Michael Eiselt, | https://www.osapublishing.org/jocn/fulltext.cfm?uri=jocn-12-10-D86&id=432806 |
5G COMPLETE | “A Gated Service MAC Protocol for sub-ms Latency 5G Fiber-Wireless MmWave C-RANs”, IEEE Transactions on Wireless Communications, Volume: 20, Issue: 4, April 2021, A. Mesodiakaki, P. Maniotis, M. Gatzianas, C. Vagionas, N. Pleros, and G. Kalfas | https://ieeexplore.ieee.org/document/9293176 |
5G COMPLETE | “Adaptive FH Optimization in MEC Assisted 5G environments”, Photonic Network Communications, Springer Photonic Network Communications (2020) 40:209–220, Viktoria-Maria Alevizaki, Markos Anastasopoulos, Anna Tzanakaki, and Dimitra Simeonidou, | https://doi.org/10.1007/s11107-020-00906-8 |
5GCroCo | 5G Cross-Border Operation for Connected and Automated Mobility: Challenges and Solutions | https://www.mdpi.com/1999-5903/12/1/5 |
5G!Drones | D1.3 5G!Drones system architecture initial design | https://5gdrones.eu/wp-content/uploads/2020/05/D1.3-System-Architecture-Initial-Design.pdf |
5G!Drones | D1.2 Initial description of the 5G trial facilities | https://www.5g-https://5gdrones.eu/wp-content/uploads/2020/05/D1.2-Initial-description-of-the-5G-trial-facilities-v2.pdfessence-h2020.eu/Portals/0/5G%20ESSENCE_%20Deliverable%202.2_v1.1_Final.pdf?ver=2018-11-27-112117-947 |
5G!Drones | D1.4 Report on UAV business and regulatory ecosystem and the role of 5G | https://5gdrones.eu/wp-content/uploads/2020/06/D1.4-Report-on-UAV-business-and-regulatory-ecosystem-and-the-role-of-5G_v3.pdf |
5G!Drones | D1.5 Description of the 5G trial facilities and use case mapping | https://5gdrones.eu/wp-content/uploads/2020/06/D1_5_Description-of-the-5G-trial-facilities-and-use-case-mapping-v2.pdf |
5G!Drones | D2.1 Initial definition of the trial controller architecture, mechanisms, and APIs | https://5gdrones.eu/wp-content/uploads/2020/06/D2.1-Initial-definition-of-the-trial-controller-architecture-mechanisms-and-APIs_v1.1.pdf |
5G-ESSENCE | D2.2: Overall System Architecture and Specifications | https://www.5g-essence-h2020.eu/Portals/0/5G%20ESSENCE_%20Deliverable%202.2_v1.1_Final.pdf?ver=2018-11-27-112117-947 |
5G-ESSENCE | D5.3: Integrated Pilot and Evaluation Report for Use Case 1 | https://www.5g-essence-h2020.eu/Deliverables.aspx |
5G-ESSENCE | D6.3: Integrated Pilot and Evaluation Report for Use Case 2 | https://www.5g-essence-h2020.eu/Deliverables.aspx |
5G-ESSENCE | D7.3: Integrated Pilot and Evaluation Report for Use Case 3 | https://www.5g-essence-h2020.eu/Deliverables.aspx |
5G-ESSENCE | White Paper: Market Analysis and Business Model of the 5G ESSENCE Project | https://www.5g-essence-h2020.eu/Portals/0/5G%20ESSENCE_Business%20Model-Whitepaper_final.pdf?ver=2020-01-14-084658-527 |
5G-EVE | The 5G EVE Multi-site Experimental Architecture and Experimentation Workflow J. Garcia-Reinoso et al., “The 5G EVE Multi-site Experimental Architecture and Experimentation Workflow” 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 2019, pp. 335-340. | https://ieeexplore.ieee.org/document/8911624 |
5G-EVE | D1.3 5G EVE end to end facility reference architecture for vertical industries and core applications | https://zenodo.org/record/3628333#.XkVsmmhKiUk |
5G-EVE | D4.1 Experimentation Tools and VNF Repository | https://zenodo.org/record/3628201#.XkVtGmhKiUk |
5G-EVE | D4.2 First version of the experimental portal and service handbook | https://zenodo.org/record/3628316#.XkVtHGhKiUk |
5G-EVE | D2.4 Initial pilot test and validation | https://zenodo.org/record/3946365#.X2tDNmgzY2w |
5G-EVE | D3.4 Second implementation of the interworking reference model | https://zenodo.org/record/3946323#.X2tDNmgzY2w |
5G-EVE | D4.4 Report on benchmarking of new features and on the experimental portal (2nd version) | https://zenodo.org/record/3946283#.X2tDPWgzY2w |
5G-EVE | D5.3 Testing environmental conditions document with first version of testing and validation suite | https://zenodo.org/record/3946265#.X2tESmgzY2w |
5G-MOBIX | D2.1 5G-enabled CCAM use cases specifications V2.0 D2.2 5G architecture and technologies for CCAM specifications V1.0 D2.4 Specification of Connected and Automated Vehicles V1.0 D3.2 - Report vehicle development and adaptation for 5G enabled CCAM use cases D3.3 - Report on the 5G technologies integration and roll-out D3.4 - Report on corridor infrastructure development and integration D3.5 - Report on the evaluation data management methodology and tools D4.2 - Report on the methodology and pilot site protocol | All Deliverables: https://www.5g-mobix.com/hub/deliverables |
5G-VINNI | D1.1 Design of infrastructure architecture and subsystems D2.1 5G-VINNI Solution facility sites High Level Design (HLD) – v1 D3.1 Specification of services delivered by each of the 5G-VINNI facilities D4.1 Initial report on test-plan creation and methodology, and development of test orchestration framework | All Deliverables: https://www.5g-vinni.eu/deliverables |
5G-VINNI | White Paper on Onboarding Vertical Applications on 5G-VINNI Facility | White Paper on Onboarding Vertical Applications on 5G-VINNI Facility |
5G-PHOS | D2.4 Final Report on Use Cases, System Requirements, KPIs and Network Architecture | http://www.5g-phos.eu/pdf/5G-PHOS_D2.4_FINAL.pdf |
5G-PHOS | Multi-user V-band uplink using a massive MIMO antenna and a fiber-wireless IFoF fronthaul for 5G mmWave small-cells | E. Ruggeri et al., “Multi-user V-band uplink using a massive MIMO antenna and a fiber-wireless IFoF fronthaul for 5G mmWave small-cells,” IEEE J. Lightwave technology, accepted, article in press, 2020. |
5G-PHOS | Next Generation Fiber-Wireless Fronthaul for 5G mmWave Networks | G. Kalfas, C. Vagionas, A. Antonopoulos, E. Kartsakli, A. Mesodiakaki, S. Papaioannou, P. Maniotis, J. Vardakas, Ch. Verikoukis, and N. Pleros, “Next Generation Fiber-Wireless Fronthaul for 5G mmWave Networks”, in IEEE Communications Magazine, vol. 57, no. 3, pp. 138-144, March 2019. |
5G-PHOS | A 5G mmWave Fiber-Wireless IFoF Analog Mobile Fronthaul link with up to 24Gb/s Multi-band Wireless Capacity | N. Argyris, G. Giannoulis, K. Kanta, N. Iliadis, C. Vagionas, S. Papaioannou, G. Kalfas, D. Apostolopoulos, C. Caillaud, H. Debrégeas, N. Pleros and H. Avramopoulos, “A 5G mmWave Fiber-Wireless IFoF Analog Mobile Fronthaul link with up to 24Gb/s Multi-band Wireless Capacity”, IEEE J. Lightwave Communication, vol. 37, no. 12, pp. 2883-2891, June 2019. |
5G-PHOS | A 5G mmWave C-RAN optical fronthaul architecture for hot-spot areas using OFDM-based analog IFoF waveforms | Ch. Mitsolidou, Ch. Vagionas, A. Mesodiakaki, P. Maniotis, G. Kalfas, Ch. Roeloffzen, P. van Dijk, R. Oldenbeuvin, A. Miliou and N. Pleros, “A 5G mmWave C-RAN optical fronthaul architecture for hot-spot areas using OFDM-based analog IFoF waveforms”, Appl. Sci. 2019, 9(19), 4059. |
5G-PICTURE | All publications | https://www.5g-picture-project.eu/publication.html |
5G-VICTORI | D2.1 5G VICTORI Use case and requirements definition and reference architecture for vertical services D2.2 Preliminary individual site facility planning D2.5 5G-VICTORI Infrastructure Operating System – Initial Design Specification D4.1 Field trials methodology and guidelines | All Deliverables https://www.5g-victori-project.eu/project-outcomes/deliverables/ |
TERAWAY | C. Tsokos, E. Andrianopoulos, A. Raptakis, N. Lyras, L. Gounaridis, P. Groumas, H. Avramopoulos, and Ch. Kouloumentas, 'Optical Beamforming Networks Supporting Multibeam and Multicast Operation', 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 1-5 (2020), DOI: 10.1109/ICTON51198.2020.9203380 M. U. Sheikh, Kalle Ruttik, N. Saba, E. Mutafungwa, R. Jäntti, and J. Hämäläinen, ‘Analysis of Drone Propagation With Ray Tracing From Sub-6 GHz Upto Terahertz Frequencies in a Real World Urban Environment’, 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea (South), 169-174 (2021), DOI:10.1109/ICOIN50884.2021.9333892 M. Ali, L. E. García-Muñoz, S. Nellen, B. Globisch, G. Carpintero, 'High-speed Terahertz PIN Photodiode with WR-3 Rectangular Waveguide Output', 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 1-2 (2020) DOI: 10.1109/IRMMW-THz46771.2020.9370781. S. Nellen, S. Lauck, G. Schwanke, M. Deumer, R. B. Kohlhaas, L. Liebermeister, M. Schell, and B. Globisch, ‘Radiation pattern of planar optoelectronic antennas for broadband continuous-wave terahertz emission," Opt. Express 29, 8244-8257 (2021) DOI: https://doi.org/10.1364/OE.416844 | All publications are available at https://ict-teraway.eu/publications/ |